
Practical and Flexible Kernel CFI Enforcement using eBPF
Jinghao Jia

IBM Research, UIUC
Yorktown Heights, NY, USA

Jinghao.Jia@ibm.com

Michael V. Le
IBM Research

Yorktown Heights, NY, USA
mvle@us.ibm.com

Salman Ahmed
IBM Research

Yorktown Heights, NY, USA
sahmed@ibm.com

Dan Williams
Virginia Tech, IBM Research

Blacksburg, VA, USA
djwillia@vt.edu

Hani Jamjoom
IBM Research

Yorktown Heights, NY, USA
jamjoom@us.ibm.com

ABSTRACT
Enforcing control flow integrity (CFI) in the kernel (kCFI) can
prevent control-flow hijack attacks. Unfortunately, current kCFI
approaches have high overhead or are inflexible and cannot support
complex context-sensitive policies. To overcome these limitations,
we propose a kCFI approach that makes use of eBPF (eKCFI) as the
enforcement mechanism. The focus of this work is to demonstrate
through implementation optimizations how to overcome the enor-
mous performance overhead of this approach, thereby enabling the
potential benefits with only modest performance tradeoffs.

CCS CONCEPTS
• Security and privacy → Operating systems security;

KEYWORDS
CFI, eBPF, On-demand, Targeted, Context-sensitive
ACM Reference Format:
Jinghao Jia, Michael V. Le, Salman Ahmed, DanWilliams, and Hani Jamjoom.
2023. Practical and Flexible Kernel CFI Enforcement using eBPF. In 1st
Workshop on eBPF and Kernel Extensions (eBPF ’23), September 10, 2023, New
York, NY, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3609021.3609293

1 INTRODUCTION
Enforcing control flow integrity (CFI) [1] in the kernel (kCFI) can be
a critical technique in preventing control-flow hijack attacks [2, 5, 7].
Existing kCFI approaches typically involve compiling a simple pol-
icy and enforcement mechanism into the binary to improve exe-
cution efficiency [8]. However, this efficiency comes at the cost of
deployment flexibility and policy expressiveness. Specifically, with
compilation-based approaches, deploying kCFI requires rebooting
the system to the new kernel, resulting not only in service interrup-
tion but also making it difficult to enable/disable kCFI. Moreover,
these simple type-based target policies embedded into the binary
are difficult to dynamically adjust and cannot leverage evolving
runtime contexts [3, 6, 9].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0293-8/23/09. . . $15.00
https://doi.org/10.1145/3609021.3609293

Our key insight is that programmability of eBPF kernel exten-
sions allows us to safely and efficiently provide the flexibility and
context sensitivity needed for kCFI policies in modern, dynamic
systems. We propose an eBPF-based kCFI approach called eKCFI
that makes use of eBPF as the enforcement mechanism. In effect,
each time an indirect control-transfer instruction is reached, an
eBPF program is invoked to decide the legitimacy of the target
destination. This approach is similar to KRIe [4] except we focus
on optimization techniques to support richer CFI use cases.

Leveraging eBPF provides opportunities to extend how kCFI can
be used and ease the deployment of kCFI. With our approach, kCFI
can be enabled/disabled on-demand, providing security adminis-
trators an important tool to adjust their defenses during runtime.
In addition, enforcement can be targeted, for example, CFI can
be applied to specific areas of the kernel, during a specific time,
when a specific network connection is made, or when a specific
user/process is run. Furthermore, because of the programmability
of eBPF, eKCFI can support a wide variety of policies that can be
updated at runtime, from simple target-lookup policies obtained via
static or dynamic approaches to more complex and precise policies
that utilize execution context.

The main impediment in realizing the outlined opportunities
is overcoming the enormous performance overhead that results
from invoking an eBPF program at each indirect control-transfer
site. The focus of this work is to overcome this impediment. In the
next section, we discuss the three main challenges and outline their
corresponding solutions.

2 REDUCING ENFORCEMENT COSTS

Reduce invocation cost Invoking an eBPF program is a significant
overhead in our approach and one that must be paid regardless
of the complexity of the enforcement policy. Hence, we focus our
initial efforts on reducing this overhead.

In an obvious, but naïve implementation, a kprobe-based eBPF
program is attached to an indirect control-transfer instruction. In-
voking an eBPF program in this way can be extremely costly due to
the context switches of kprobe. To gauge the overhead and assess
the feasibility of our optimization proposal, we measure the laten-
cies associated with different techniques for calling an enforcement
routine, shown in Table 1.

The first measurement is of the latency of a vanilla kernel invok-
ing a single indirect function call. This represents the latency of
no CFI enforcement and is the best possible performance any kCFI

84

https://doi.org/10.1145/3609021.3609293
https://doi.org/10.1145/3609021.3609293
https://doi.org/10.1145/3609021.3609293
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609021.3609293&domain=pdf&date_stamp=2023-09-10

SIGCOMM ’23, September 10, 2023, New York, NY, USA Jia et al.

technique can strive for (unlikely attainable). We then measure the
overhead of an efficient and widely available LLVM-based kCFI
enforcement mechanism where the integrity check is inlined right
before an indirect control-transfer site [8]. Next, we measure the
overhead of invoking an eBPF-based enforcement program using
the naïve kprobe attaching method. This approach represents the
worst case for invoking an eBPF program. Our eBPF program im-
plements a minimal CFI policy — it only checks whether the control
transfer target is a null pointer. We register the kprobe program
right before the indirect call site. As can be seen in Table 1, the
LLVM-based kCFI technique is only slightly worse than no CFI
enforcement while the kprobe-based eBPF approach is almost 24x
slower.

Clearly, to make our approach feasible, we need to reduce the
latency of invoking an eBPF program. We observe that the major
overhead of the kprobe-based approach is the taking and handling
of the kprobe interrupt. To eliminate this overhead, we can in-
stead insert a tracepoint-style attachment point, which essentially
invokes the eBPF program synchronously without requiring an
interrupt. The latency of this method is shown in Table 1 and is
significantly better than the kprobe approach implementing the
same policy. The overhead associated with the tracepoint approach
includes checking whether tracepoint is enabled and setting up
tracepoint context for the target eBPF program. If we can reduce or
eliminate the overhead associated with tracepoint, our remaining
overhead would just be the cost of calling an eBPF program. This
observation leads us to our most optimized invocation approach,
akin to creating a custom kCFI eBPF attachment mode that inlines
the eBPF program invocation. As can be seen from Table 1, this
technique (with our minimal policy) results in overhead that is very
close to the LLVM-based kCFI approach, giving us evidence that
there is room for aggressive optimization.

To implement the optimized eBPF invocation, we plan to stati-
cally insert nop bytes at each indirect control-transfer site. These
bytes can be dynamically patched to calls to eBPF handlers, effec-
tively inlining the eBPF program invocation.

Table 1: Overheads for invoking integrity checks.

Invocation technique Latency (cycles)
no checks 159 ± 2
LLVM-based inline check 176 ± 18
kprobe-based eBPF 4171 ± 1547
tracepoint-based eBPF 638 ± 48
direct (naked) eBPF 201 ± 13

Reduce policy check cost. We can accelerate the policy checks by
storing the policies in a hierarchical structure so that it is possible
to cache the "fast path" in which some indirect control-transfer

sites that exhibit deterministic patterns can be quickly resolved.
In addition, we can consolidate the same or similar control flow
patterns with intelligent encoding for efficient storage and fast
lookup.

Reduce indirect control-transfer checks. We propose the use of
subsampling on the kernel indirect control-transfer sites. In other
words, we propose the ability to enforce CFI on a select subset of
kernel functionalities (targeted regions), and within the selected
kernel region(s), a select subset of the CFG guided by either sta-
tistical means (e.g., randomly select CFG edges, which can reduce
security guarantees) or by a set of security principles. For exam-
ple, only select indirect sites to check that reference data directly
writable by users, or similarly, drop checking indirect sites that
reference data from read-only data fields.

3 CONCLUSION
Unlike existing approaches, an efficient eBPF-based kCFI mecha-
nism can precisely target, enrich, and fine tune enforcement policies
by leveraging runtime context. Furthermore, enforcement policies
can change dynamically based on perceived risks such as terminate
execution, send an alert, log, or fall back to a less restrictive policy.

All of this complexity will of course increase the enforcement
overhead andwill need to be further assessed. However, by applying
the optimizations above, we believe the performance issues can be
tamed. By leveraging eBPF and aggressively optimizing for the kCFI
use case, we hope to provide a practical alternative kCFI approach
that compliments existing compiler-based approaches.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security.

[2] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels. In 2014 IEEE
Symposium on Security and Privacy.

[3] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In 26th USENIX
Security Symposium (USENIX Security 17).

[4] Guillaume Fournier. 2022. Return to Sender - Detecting Kernel Exploits with eBPF.
https://i.blackhat.com/USA-22/Wednesday/US-22-Fournier-Return-To-Sender.
pdf. (2022). Accessed 2023.

[5] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-Grained
Control-Flow Integrity for Kernel Software. In IEEE European Symposium on
Security and Privacy.

[6] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R.
Harris, Taesoo Kim, andWenke Lee. 2018. Enforcing Unique Code Target Property
for Control-Flow Integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security.

[7] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. 2018. Fine-CFI: Fine-
Grained Control-Flow Integrity for Operating System Kernels. IEEE Transactions
on Information Forensics and Security (2018).

[8] LLVM. 2023. Control Flow Integrity Design Documentation. https://clang.llvm.
org/docs/ControlFlowIntegrityDesign.html. (2023). Accessed 2023.

[9] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.

85

https://i.blackhat.com/USA-22/Wednesday/US-22-Fournier-Return-To-Sender.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Fournier-Return-To-Sender.pdf
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

	Abstract
	1 Introduction
	2 Reducing Enforcement Costs
	3 Conclusion
	References

