
Rex: Closing the language-verifier gap
with safe and usable kernel extensions

Jinghao Jia∗, Ruowen Qin∗, Milo Craun†, Egor Lukiyanov†, Ayush Bansal∗, Minh Phan∗

Michael V. Le‡, Hubertus Franke‡, Hani Jamjoom‡, Tianyin Xu∗, Dan Williams†

∗University of Illinois Urbana-Champaign †Virginia Tech ‡IBM T.J. Watson Research Center

Abstract
Safe kernel extensions have gained significant traction, evolv-
ing from simple packet filters to large, complex programs
that customize storage, networking, and scheduling. Existing
kernel extension mechanisms like eBPF rely on in-kernel veri-
fiers to ensure safety of kernel extensions by static verification
using symbolic execution. We identify significant usability
issues—safe extensions being rejected by the verifier—due
to the language-verifier gap, a mismatch between developers’
expectation of program safety provided by a contract with the
programming language, and the verifier’s expectation.

We present Rex, a new kernel extension framework that
closes the language-verifier gap and improves the usability of
kernel extensions in terms of programming experience and
maintainability. Rex builds upon language-based safety to pro-
vide safety properties desired by kernel extensions, along with
a lightweight extralingual runtime for properties that are un-
suitable for static analysis, including safe exception handling,
stack safety, and termination. With Rex, kernel extensions are
written in safe Rust and interact with the kernel via a safe
interface provided by Rex’s kernel crate. No separate static
verification is needed. Rex addresses usability issues of eBPF
kernel extensions without compromising performance.

1 Introduction

Kernel extensibility is an essential capability of modern Op-
erating Systems (OSes). Kernel extensions allow users with
diverse needs to customize the OS without adding complexity
to core kernel code or introducing disruptive kernel reboots.

In Linux, kernel extensibility has traditionally taken the
form of loadable kernel modules. However, kernel mod-
ules are inherently unsafe—simple programming errors can
crash the kernel. Despite the support of safe languages like
Rust [23], there is no systematic support to ensure the safety
of kernel modules—unsafe Rust code is allowed in kernel
modules wherein checks to prevent errors are non-existent.
Moreover, the vast, arbitrary interface exposed to kernel mod-
ules creates significant challenges in providing a safe Rust
kernel abstraction to enforce safe Rust code [48, 76].

Recently, eBPF extensions have gained significant traction
and become the de facto kernel extensions [5, 10]. Core to

eBPF’s value proposition is a promise of safety of kernel
extensions, enforced by the in-kernel verifier. The verifier
statically analyzes extension programs in eBPF bytecode,
compiled from high-level languages (C and Rust). It performs
symbolic execution against every possible code path in the
bytecode to check safety properties (e.g., memory safety, type
safety, termination, etc). The kernel rejects any extension the
verifier fails to verify. Today, eBPF extensions have evolved
far beyond simple packet filters (its original use cases [75,77])
and are increasingly being used to construct large, complex
programs that customize storage [40, 55, 102, 106], network-
ing [107, 108], CPU scheduling [11, 60, 87], etc.

However, we observe that eBPF’s static verifier introduces
significant usability issues, making eBPF extensions hard to
develop and maintain, especially for large, complex programs.
For example, the eBPF verifier often incorrectly rejects safe
extension code due to fundamental limitations of static ver-
ification and defects in the verifier implementation. When
such false rejections happen, developers have no choice but
to refactor or rewrite extension programs in ways that “please”
the verifier. Such efforts range from breaking an extension
program into multiple small ones, nudging compilers to gener-
ate verifier-friendly code, tweaking code to assist verification,
etc (see §3). Some of the efforts also involve reinventing
wheels and hacking eBPF bytecode, which creates significant
cognitive overheads and makes maintenance difficult.

We argue that these usability issues are rooted in the gap
between the programming language and the eBPF verifier,
which we term the language-verifier gap. When writing eBPF
programs, developers interact with the high-level language
and naturally obey a language contract to align with the safety
requirements of the language. The compiler also adheres to
the language contract. Unfortunately, the verifier is not part
of the language contract and has different expectations. As a
result, verifier rejections may be surprising; the feedback (ver-
ifier log) is at the bytecode level and is hard to map to source
code. As a result, developing eBPF extensions requires not
only a deep knowledge of the high-level language and safety
properties of kernel extensions but also a deep understanding
of implementation details and quirks of the verifier.

Unfortunately, recent efforts to improve the eBPF verifier
(e.g., via testing and verification [35, 97]) cannot fundamen-
tally close the language-verifier gap because (1) they do not

address scalability issues of symbolic execution, so exten-
sion programs have to ill-fit the verifier’s internal limits, and
(2) it is unlikely that the language compiler (e.g., LLVM)
and the eBPF verifier are always in synchronization, given
their independent developments. Recent efforts to improve
extension expressiveness via techniques like software fault
isolation (e.g., KFlex [52]) largely inherit the eBPF verifier
and, therefore, do not address the language-verifier gap.

We present Rex, a new kernel extension framework that
closes the language-verifier gap and effectively improves the
usability of kernel extensions, in terms of programming expe-
rience and maintainability. Rex builds up safety guarantees
for kernel extensions based on safe language features. With
Rex, safety properties are checked by the language compiler
within the language contract. Rex drops the need for an extra
verification layer and closes the language-verifier gap. We
choose Rust as the safe language, as it is already supported
by Linux [23] and offers desired language-based safety for
practical systems programming [33, 36, 76, 82].

Rex kernel extensions are strictly written in safe Rust with
selected features (unsafe Rust code is forbidden in Rex ex-
tensions). Rex transforms the promises of Rust into safety
guarantees for extension programs with the following endeav-
ors. First, to enable Rex extensions to be written entirely in
safe Rust in the context of kernel extension, Rex develops
a kernel crate and offers a safe kernel interface that wraps
the existing eBPF kernel interface (eBPF helper functions
and data types) with safe Rust wrappers and bindings. The
kernel crate enforces memory safety, extends type safety, and
ensures safe interactions with the kernel. Rex further enforces
only safe Rust features through its compiler toolchains.

Moreover, Rex employs a lightweight extralingual runtime
for safety properties that are hard to guarantee by static analy-
sis. Specifically, Rex supports safe stack unwinding and re-
source cleanup upon Rust panics at runtime. Rex also checks
kernel stack usage and uses watchdog timers to ensure termi-
nation with a safe mechanism. The Rex runtime is engineered
with minimal overhead to achieve high performance.

We evaluate Rex on both its usability and performance. We
show that by closing the language-verifier gap and offering
Rust’s rich built-in functionality, Rex effectively rules out the
usability issues in eBPF. We further evaluate the usability
by implementing the BPF Memcached Cache (BMC) [55]
(a complex, performance-critical program written in eBPF)
using Rex and show that Rex leads to cleaner, simpler ex-
tension code. We also conduct extensive macro and micro
benchmarks. Rex extensions deliver the same level of perfor-
mance as eBPF extensions—the enhanced usability does not
come with a performance penalty.

Limitations. Rex’s design comes with tradeoffs. To close
the language-verifier gap and improve usability, Rex requires
kernel extensions to be written in Rust, though its design
principles apply to other safe languages. Rex brings the Rust
toolchain into the Trusted Computing Base (TCB) and adds

additional runtime complexity. Note that Rex extensions and
eBPF extensions can co-exist—Rex and eBPF represent differ-
ent tradeoffs. Rex targets large, complex kernel extensions for
which usability and maintainability are critical, while small,
simple extensions (e.g., packet filters) can still be written in
eBPF, as their small amount of code and simple logic makes
them less susceptible to the language-verifier gap.
Contributions. We make the following main contributions:

• A discussion of the language-verifier gap and its impact on
the usability and maintainability of safe kernel extensions;

• Design and implementation of the Rex kernel extension
framework, which closes the language-verifier gap by re-
alizing safe kernel extensions upon language-based safety,
together with efficient runtime techniques;

• The Rex project is at https://github.com/rex-rs.

2 Safety of Kernel Extensions

Safety is critical to OS kernel extensions—extension code
runs directly in kernel space, and bugs can directly crash a
running kernel. The eBPF verifier checks safety properties of
extension programs in bytecode before loading them into the
kernel to prevent programming errors such as illegal memory
access. The verifier also checks the extension’s interactions
with the kernel via a bounded interface, defined by eBPF
helper functions, to prevent resource leaks and deadlocks. We
summarize the safety properties targeted by eBPF as follows:

• Memory safety. Kernel extensions can only access pre-
allocated memory via explicit context arguments or ker-
nel interface (helper functions), preventing NULL pointer
dereferencing and corruption of kernel data structures. The
eBPF verifier tracks the category of each value in the pro-
gram to prevent dereference of invalid pointers (e.g., an
arbitrary scalar value) as well as the size of the pointed
memory to avoid out-of-bounds accesses.

• Type safety. When accessing data in memory, kernel ex-
tensions must use the correct types of data, avoiding misin-
terpretation of the data and memory corruption. The eBPF
verifier checks the offset and size of memory accesses and
ensures that they always match the underlying object.

• Resource safety. When acquiring kernel resources (e.g.,
locks, memory objects, etc.) through helper functions, ker-
nel extensions must eventually invoke the appropriate inter-
face to release the resources, preventing memory leaks or
deadlocks that can crash or hang the kernel. In eBPF, the
release of resources is checked by the verifier on all code
paths. Since doing so is not enough to prevent deadlocks
due to the possibility of circular wait, eBPF additionally
restricts extensions to only hold one lock at a time.

• Runtime safety. Kernel extensions must terminate, with no
infinite loops that can hang the kernel indefinitely. The ver-
ifier checks presence of backedges in the program and sets

https://github.com/rex-rs

Linux kernel

Source code
(e.g., C/Rust)

Compiler toolchain
(check p)

Verifier
(check q)

Language Contract

BPF bytecode

?

Verifier error

Figure 1: The language-verifier gap

a verification complexity limit on the number of bytecode
instructions [92] it would explore to ensure termination.

• Stack safety. Kernel extensions must not overflow the lim-
ited and fixed-size kernel stack, avoiding kernel crashes or
kernel memory corruptions. The verifier tracks stack usage
of the program across function calls and rejects programs
that use excessive amount of stack.

The eBPF verifier is complemented by the eBPF helper
functions acting as the kernel interface, which allows inter-
actions between the extension and the kernel. The helper
function interface only contains around 200 routines, which is
much more restrictive than that of the loadable kernel modules.
The interface is designed to be high-level: helper functions
are typically self-contained and encapsulate many low-level
kernel operations, which in most cases eliminates the need
of a protocol between extensions and the kernel. The simple
and high-level nature of the interface makes it easy to reason
about its safety—the eBPF verifier only needs to check value
categories of the arguments passed for most helper functions.
Helper functions are also the only means for extensions to
acquire kernel resources. The interface defines both the acqui-
sition and release routines for each resource, with the verifier
ensuring the release routine is called before program exits.

Note that the above notion of safety in eBPF focuses on pre-
venting programming errors that may crash or hang the kernel.
Despite the discussions on whether security is a reasonable
target [65, 73], in practice, eBPF and other extension frame-
works (e.g., KFlex [52]) no longer pursue unprivileged use
cases due to their inherent limitations (see detailed discussion
in §4) [47, 53, 58]. Our work follows this safety model.

3 The Language-Verifier Gap

A fundamental problem of eBPF’s safety verification mech-
anism is the language-verifier gap (illustrated in Figure 1).
Developers mainly implement and maintain eBPF extensions
in high-level languages (e.g., C and Rust) and compile them
to eBPF bytecode; they agree to a contract with the high-level
language (code has property p), which is enforced by the com-
piler. When a program fails to compile, developers receive
feedback about how they violate the language contract. How-
ever, in eBPF, the compiled extension code will be further
checked by the verifier. If correctly compiling code fails to
pass the verifier (e.g., the code lacks property q, which is not

Table 1: Patterns of common verifier workarounds

Category Count

Refactoring extension programs into small ones 27
Hinting LLVM to generate verifier-friendly code 22
Changing code to assist verification 15
Dealing with verifier bugs 9
Reinventing the wheels 1

part of the contract), it is difficult for developers to understand
why the extension program fails despite obeying the contract.

The language-verifier gap is further exacerbated when the
verifier incorrectly rejects safe extension programs due to (1)
scalability limitations of the symbolic execution used by the
verifier, (2) conflicting analyses between the compiler and the
verifier, and (3) the verifier’s implementation defects. Today,
the language-verifier gap forces developers to understand
the verifier’s internal implementation and its limitations and
defects, and to revise extension code in ways that can pass
the verifier at the bytecode level. Many such revisions are
workarounds solely to please the verifier. Fundamentally, the
language-verifier gap breaks the language abstractions and
artificially forces extension programs in a high-level language
to tightly couple with the low-level verifier implementation.

3.1 Verifier Workarounds

To understand the impact of the language-verifier gap, we an-
alyzed commits related to revising eBPF programs to resolve
verifier issues in popular eBPF projects, including Cilium [6],
Aya [3], and Katran [16]. The commits were collected by
searching through the commit logs of each project using key-
words and manually inspected. In total, we collected 72 com-
mits related to verifier issues. We also included two issues
raised by BMC [55] and Electrode [107] in the discussion.

In all 72 commits, we confirmed that the original eBPF
programs were safe but were rejected by the verifier due to de-
fective or overly conservative safety checks. When the verifier
rejects a safe program, the developer must find a workaround.
Table 1 summarizes the workaround patterns.

Refactoring extension programs into small ones. The most
common pattern (27 out of 72) is refactoring a large eBPF pro-
gram, which the verifier rejects due to exceeding the verifier’s
internal limits into smaller ones. Since symbolic execution
is hard to scale, the eBPF verifier imposes a series of limits
on the complexity of extension programs (e.g., the number
of bytecode instructions and branches [92]) to ensure verifi-
cation completes at load time. The eBPF extension will be
rejected if it exceeds any of these limits. Such rejections have
no implication on the safety of the extension; rather, they are
artifacts of scalability limitations of static verification.

We observe two standard practices of refactoring eBPF
programs to work around verifier limits: (1) splitting eBPF

1 ; return (void *)(unsigned long)ctx ->data;
2 ; LLVM generates a 32-bit load on ctx->data
3 2: (61) r9 = *(u32 *)(r7 +76)
4 ; LLVM generates a 32-bit assignment , prompting
5 ; the verifier to discard the pointer value type
6 3: (bc) w6 = w9
7 ...
8 ; now verifier treats it as an untrusted scalar
9 7: r2 = *(u8 *)(r6 +22)
10 Error: R6 invalid mem access ’inv’

(a) Verifier log showing an invalid memory access, which is hard to
diagnose and does not directly map to the source code in C

1 static __always_inline void *
2 ctx_data (const struct __sk_buff *ctx) {
3 void *ptr;
4 /* prevent LLVM from generating 32-bit move */
5 asm volatile (
6 "%0 = *(u32 *)(%1 + %2)"
7 : "=r"(ptr)
8 : "r"(ctx),
9 "i"(offsetof(struct __sk_buff , data))
10);
11 return ptr;
12 }

(b) Inline assembly code created to work around the verification
failure by preventing the compiler optimization

Figure 2: An example of the language-verifier gap from Cil-
ium [41], where a safe eBPF extension is incorrectly rejected
by the verifier (2a) and developers had to work around the
problem by creating inline assembly code (2b).

programs into smaller ones and (2) rewriting eBPF programs
with reduced complexity the verifier can handle.

We use BMC [55] as an example to explain these practices.
BMC uses eBPF to implement in-kernel caches to acceler-
ate Memcached. Conceptually, only two extension programs
are needed (at ingress and egress, respectively). However, to
satisfy the verifier limit, BMC developers had to split BMC
code into seven eBPF programs connected via tail calls.1 Such
splitting creates an unnecessary burden on the implementa-
tion and maintenance of BMC; it also creates performance
issues when states need to pass across tail calls (using maps).

Despite the smaller size of each program after splitting,
BMC programs that iterate over the packet payload in a loop
cannot easily pass the verifier. While the programs correctly
check for the bounds of the payload, the programs result in
an excessive number of jump instructions and exceed the
verifier’s complexity limit. As a workaround, developers must
bind the size of the data BMC can handle further to pass the
verifier. §7.1 revisits this example in more depth.

Hinting LLVM to generate verifier-friendly code Another
common pattern is to change source code in ways that nudge
the compiler (LLVM) to generate verifier-friendly bytecode.
In several cases, LLVM generates eBPF bytecode that fails
the verifier due to complex, often undocumented expectations
of the verifier. Figure 2a shows a case from Cilium [41] that
accesses a pointer field (ctx->data) in a socket buffer, defined

1Since BMC, the limit has increased, but the fundamental gap remains.

as a 32-bit integer in the kernel uapi interface. LLVM gen-
erates a 32-bit load on data and assigns its value to another
32-bit register. While data is defined as 32-bit, under the hood
it represents a pointer to the start of the packet payload. The
32-bit assignment made the verifier interpret the pointer as a
scalar and incorrectly reject the program when it tries to ac-
cess memory through the scalar. As a workaround, developers
encapsulated access to data in inline assembly (Figure 2b) to
prevent LLVM from generating 32-bit move as an optimiza-
tion (LLVM does not optimize inlined assembly). The verifier
then treats the register as a pointer rather than a scalar.

In another case [38], developers were forced to use
volatile when loading from a 32-bit integer pointer and only
using its upper 16 bits. Without volatile, LLVM optimized
the code to only load the upper 16 bits from the pointer, which
the verifier perceives as a size mismatch violation.

In fact, many eBPF programs today can only pass the ver-
ifier if compiled with -O2 optimization—the verifier has a
hardwired view of eBPF extension bytecode, which the com-
piler cannot generate with other levels, including -O0.

Changing code to assist verification. In this pattern, devel-
opers had to assist the verifier manually. A common pattern
is refactoring the code into new functions when the verifier
loses track of values in eBPF programs. It is often unclear
what code needs to be refactored to pass the verifier, which
significantly burdens developers. In a case from Cilium [86],
developers had to refactor a network policy check into a sepa-
rate function to change the program control flow that caused
verifier to lose track of certain values in the program. We
discuss examples of this category in more details in §A.

Dealing with verifier bugs. The language-verifier gap is
further exacerbated by verifier bugs [35, 63, 72, 85], as devel-
opers need to acquire knowledge of the verifier’s expectations
and deficiencies. Moreover, different kernel versions can have
different verifier bugs. Dealing with verifier bugs and main-
taining compatibility across kernel versions is non-trivial. In
a Cilium case [57], the verifier rejected a correct program
with valid access to the context pointer due to the verifier’s
incorrect handling of constant pointer offsets. The verifier bug
was known, but the fix was not present in all kernel versions.
Cilium developers had to tweak their program to avoid the
bug-triggering, yet correct, context pointer access so the code
could verify on all kernel versions.

Reinventing the wheels. Developers may need to reimple-
ment existing functions to pass the verifier. In Aya, the default
definition of the memset and memcpy intrinsics provided by the
language toolchain failed to pass the verifier [50]. Aya eventu-
ally implemented its own version for both intrinsics, using a
simple loop to iterate over the data to avoid ever tripping the
verifier. This case reflects a key challenge of using eBPF for
large, complex extension programs, as developers may need
to re-implement many standard, nontrivial library functions.

3.2 Implications
Our analysis shows that the language-verifier gap causes se-
vere usability issues in developing and maintaining eBPF
kernel extensions. eBPF developers have to implement arcane
fixes and change their mental model to meet the verifier’s
constraints. If an eBPF extension fails to verify, the verifier
log rarely pinpoints the root causes and cannot help trace
back to the source code. Since it is hard to require compilers
like LLVM to follow the eBPF verifier’s implementations,
we expect the language-verifier gap will continue to exist,
especially for large, complex extension programs.

4 Key Idea and Safety Model

The key idea of Rex is to realize safe kernel extensions with-
out a separate layer of static verification. Our insight is that
the desired safety properties of kernel extensions can be built
on the foundation of language-based properties of a safe pro-
gramming language like Rust, together with extralingual run-
time checks. In this way, the in-kernel verifier can be dropped,
and the language-verifier gap can be closed. Rex extensions
are strictly written in a safe subset of Rust. We choose Rust
as the safe language for kernel extensions (instead of other
languages like Modula-3 [34] and Sing# [54]) because Rust is
already supported by Linux [45] and offers desired language
features for practical kernel code [36,71,82]. Rex enforces the
same set of safety properties eBPF enforces (§2). Hence, Rex
extensions fundamentally differ from unsafe kernel modules.

Safety Model. Rex follows eBPF’s non-adversarial safety
model—the safety properties focus on preventing program-
ming errors from crashing/hanging the kernel instead of mali-
cious attacks. Like eBPF, Rex extensions are installed from
a trusted context with root privileges on the system. Rex
extensions can only be written in safe Rust with selected fea-
tures and language-based safety is enforced by a trusted Rust
compiler (§5.1). Unlike Rust kernel modules that can use
unsafe Rust, the language-based safety of Rex extensions is
strictly enforced. Other safety properties that are not covered
by language-based safety (e.g., termination) are checked and
enforced by the lightweight Rex runtime.

While historically eBPF supported unprivileged mode [47]
and there are research efforts in supporting unprivileged use
cases for kernel extensions [64, 65, 73], in practice, eBPF
and other frameworks (e.g., KFlex [52]) no longer pursue
it [53, 58]. The reasons come from inherent limitations of
securing eBPF or kernel extensions in general.

First, it is hard for the eBPF verifier to prevent transient ex-
ecution attacks like Spectre attacks completely, without major
performance and compatibility overheads (see [53]). Specif-
ically, new Spectre variants are being discovered; though
many of them are bugs in hardware, they cannot be easily
detected and fixed by static analysis [68]. Sandboxing tech-
inques cannot completely prevent Spectre attacks either, e.g.,
SafeBPF [73] only prevents memory vulnerabilities, while

Kernel

Rex ext.
(Safe Rust)

Rex runtime

Hook
point

Panic handler

Load-time fixup

Trusted compiler toolchain

Safe kernel
interface

eBPF helper
functions

eBPF maps

Rex ext.
(Safe Rust)

Safe stack
unwind

Rex kernel crate

Terminator

User

Load path
Normal path
Error path

• Rust feature usage enforcement
• Kernel stack instrumentation

• Rust safety check

Figure 3: Overview of the Rex kernel extension framework.
The gray boxes are Rex components.

BeeBox [65] only focuses on two Spectre variants and re-
quires manual instrumentation of helper functions. For these
reasons, the Linux kernel and major distributions also have
moved away from unprivileged eBPF [25, 58, 80].

Second, eBPF chose not to be a sandbox environment (like
WebAssembly or JavaScript) that does not know what code
will be run [53]. Instead, the development of eBPF assumes
that “the intent of a BPF program is known [53].”

Lastly, the constantly reported verifier vulnerabilities [63,
88, 91] indicate that a bug-free verifier is hard in practice.

Trusted Computing Base (TCB). With Rex’s safety model,
the TCB consists of the Rust toolchain, the Rex kernel crate,
and the Rex runtime. Rex has to trust the Rust toolchain for
its correctness to deliver language-based safety. We believe
the need to trust the Rust toolchain is acceptable and does not
come with high risks with our safety model. Recent work on
safe OS kernels [36, 76, 82] makes the same decision to es-
tablish language-based safety by trusting the Rust toolchains.
The active effort on extensive fuzzing and formal verification
of the Rust compiler [12,24,66,67,69,70] may further reduce
the risk. Certainly, we acknowledge that the existing Rust
compiler, such as rustc [30], is larger than the eBPF verifier.

5 Rex Design

The key challenge of the Rex design is to provide safety
guarantees of kernel extensions (listed in §2) on top of Rust’s
safe language features (adopting a safe language alone is
insufficient, as in Rust kernel modules).

Figure 3 gives an overview of the Rex framework. To real-
ize language-based safety, Rex enforces kernel extensions to
be strictly written in safe Rust with selected features. The Rex
compiler toolchain rejects any Rex program that uses unsafe
language features. Although this safe subset of Rust already
provides inherent language-based safety within Rex exten-
sions, eliminating undefined behaviors, safety of extensions
is only achieved with the presence of safe kernel interactions
provided by the Rex kernel crate. The kernel crate is trusted
and bridges Rex extensions with unsafe kernel code. Rex
builds on top of the eBPF helper function interface to provide
a safe kernel interface for Rex extensions to interact with the

kernel using safe Rust wrappers and bindings. The safe inter-
face encapsulates the interaction across the foreign function
interface in the kernel crate. We reuse the eBPF helper inter-
face, because it is designed for kernel extensions with a clearly
defined programming contract and separates extensions from
the kernel’s internal housekeeping (e.g., RCU [32]).

Rex employs a lightweight extralingual in-kernel runtime
that checks safety properties that are hard for static analysis.
The runtime enforces program termination, kernel stack safety,
and safe handling of runtime exceptions (e.g., Rust panics).

Although Rex reuses the existing hook points of eBPF, it
assumes no nesting of extension programs, where another
program executes on top of an existing program (e.g., by
kprobing a helper function). This simplifies the reasoning of
shared states and data races. At the same time, we note that
uncontrolled program nesting is also unsafe in existing eBPF.

5.1 Safe Rust in Rex
Rex only allows language features that are safe in the con-
text of kernel extensions. First, Rex excludes any unsafe
Rust code as it misses important safety checks from the
Rust compiler and can violate various safety properties (§2).
Second, Rex forbids Rust features that interfere with Rust’s
automatic management of object lifetimes, which include
core::mem::{forget,ManuallyDrop} and the forget intrin-
sic. These features are considered safe in Rust but violate
resource safety of kernel extensions by facilitating resource
leakage. Third, language features that cannot be supported in
the kernel extension context are excluded by Rex. This group
contains the std [26] crate and dynamic allocation support
(not available in no_std build [20]), the floating point and
SIMD support (generally cannot be used in kernel space),
and the abort intrinsic (triggers an invalid instruction). Note
that dynamic allocation may be supported by hooking the
alloc [1] crate to the kernel allocator. We plan to explore the
use of dynamic allocation in extensions in future works (§8).

To enforce the restrictions, Rex configures the Rust com-
piler and linter to reject the use of prohibited features. Specif-
ically, we set compiler flags [17] to forbid unsafe code and
unstable Rust features, which include SIMD and intrinsics.
For individual langauge items such as core::mem::forget,
we configure the Rust linter [7] to detect and deny their usage.
We further remove floating point support by setting the target
features [8] in Rex compilation. The std library and dynamic
allocation are already unavailable in no_std environment used
by Rex and therefore warrant no further enforcement.

5.2 Memory safety
Rex enforces that extensions access kernel memory safely.
There are two common memory access patterns, depending on
the ownership of the memory region: (1) memory owned by
the extension (e.g., a stack buffer) is sent to the kernel through
helper functions, and (2) memory owned by the kernel (e.g.,
a kernel struct) is accessed by the extension.

Memory owned by extensions. A Rex extension can allocate
memory on the stack and send it to the kernel (e.g., asking
the kernel to fill a stack buffer with data) via existing eBPF
helper functions. Rex ensures no unsafe memory access and
thus prevents stack buffer overflow and kernel crash (e.g.,
corruption of the return address on the stack).

Unlike eBPF, which checks a memory region with its size
on every invocation of a helper function, in Rex, the strict type
system of Rust already prevents unsafe access. Rex leverages
the generic programming feature of Rust [13] to ensure that
the size sent through the helper function interface is always
valid. For helper functions that take in pointer and size as
inputs, the Rex kernel crate creates an adaptor interface that
parametrizes the pointer type as a generic type parameter.
The interface queries the size of the generic type from the
compiler and invokes the kernel interface with this size as
an argument. Since Rust uses monomorphization [18], the
concrete type and its size are resolved at compile time, adding
no runtime overhead. In this way, the size is guaranteed to
match the type statically and the kernel will never make an
out-of-bound access. This works for both scalar types and
array types. We use Rust’s const generics to allow a constant
to be used as a generic parameter [13] to encode array lengths.

Memory owned by the kernel. The kernel can provide ex-
tensions with a pointer to kernel memory (e.g., map value
pointers and packet pointers). The extension must not have
out-of-bound memory accesses. In eBPF, the verifier checks
uses of kernel pointers with a static size, e.g. map value point-
ers (maps store the size of values); for pointers without a static
size, like packet data pointers, the verifier requires extensions
to explicitly check memory boundaries.

In Rex, pointers with static sizes are handled through the
Rust type system. The kernel map interface of Rex encodes
the key and value types through generics and returns such
pointers to extension programs as safe Rust references. To
manage pointers referring to dynamically sized memory re-
gions, the Rex kernel crate abstracts such pointers into a Rust
slice with dynamic size. Rust slices provide runtime bounds
checks (§5.5), which allow the checking to happen without
explicit handling by the extension.

Rust slices are in principle similar to dynptr in eBPF [96],
but provide more flexibility. eBPF dynptrs are pointers to
dynamically sized data regions with metadata (size, type, etc);
however, access to the dynptr’s referred memory must be of
a static size. Rust slices allow dynamically sized access to
the underlying memory, benefiting from its runtime bounds
checks. Moreover, the bpf_dynptr_{read,write} helpers do
not implement a zero-copy interface like that available in
Rust slices. While bpf_dynptr_{data,slice} helpers allow
extensions to obtain data slices without copying, they again
require explicit checks of the bound of the slice. As a tradeoff,
eBPF dynptrs avoid runtime overheads of dynamic bounds
checks, which we find negligible in our evaluation (§7.2).

5.3 Extended type safety

Rex extends Rust’s type safety to allow extension programs
to safely convert a byte stream into typed data. This pattern is
notably found in networking use cases, where extensions need
to extract the protocol header from a byte buffer in the packet
as a struct. Safety of such transformations is beyond Rust’s
native type safety because they inevitably involve unsafe type
casting. eBPF allows pointer casting; the verifier ensures: (1)
the program does not make a pointer from a scalar value, and
(2) the new type fits the memory boundary.

Rex also enforces the above two properties so that the
reinterpreting cast (dubbed “transmute” in Rust) is safe. Rex
extends Rust’s type safety to cover such casts. To satisfy (1),
Rex ensures the target Rust type of casting does not contain
raw pointers or safe references in any transitively reachable
fields. Rex introduces a Rust auto trait [2], rex::NoRef. The
Rust compiler automatically implements an auto trait on a
type unless the type is explicitly opted out via a negative
implementation [19] or the type contains a field on whose
type the trait is not implemented. We negatively implement
rex::NoRef on the raw pointer and safe reference types of
Rust, which ensures any type transitively containing a pointer
or a reference will not have an implementation of the trait
generated by the Rust compiler. Note that polymorphic types
without statically known fields are not a problem because
they take the form of trait objects [31] in Rust and can only
exist behind pointers that already do not have an implementa-
tion of rex::NoRef. By requiring the target type of casting to
implement rex::NoRef via trait bounds [4], (1) is effectively
satisfied. To satisfy (2), Rex performs explicit bound checking
in the transmute interface to ensure the target type always fits.

5.4 Safe resource management

Rex extensions are ensured to acquire and release resources
properly to avoid leaks of kernel resources (e.g., refcounts and
spinlocks). Different from eBPF where the verifier checks all
possible code paths to ensure the release of acquired resources,
Rex uses Rust’s Resource-Acquisition-Is-Initialization (RAII)
pattern [21]—for every kernel resource a Rex extension may
acquire, the Rex kernel crate defines an RAII wrapper type
that ties the resource to the lifetime of the wrapper object.

For example, when the program obtains a spinlock from
the kernel, the Rex kernel crate constructs and returns a
lock guard. The lock guard implements the RAII semantics
through the Drop trait [9] in Rust, which defines the oper-
ation to perform when the object is destroyed. In the case
of the lock guard, its drop handler releases the lock. Rex
uses compiler-inserted drop calls at the end of object lifetime
during normal execution, and implements its own resource
cleanup mechanism (§5.5) for exception handling. The use of
RAII automatically manages kernel resources to ensure safe
acquisition and release. Extension programs do not need to
explicitly release the lock or drop the lock guard.

5.5 Safe exception handling
While certain Rust safety properties are enforced statically by
the compiler, the others are checked at runtime and their vio-
lations trigger exceptions (i.e., Rust panics). To handle excep-
tions in userspace, Rust uses the Itanium exception handling
ABI [14] to unwind the stack. A Rust panic transfers the con-
trol flow to the stack unwinding library (e.g., llvm-libunwind),
which backtracks the call stack and executes cleanup code
and catch clauses for each call frame. Unfortunately, this ABI
is unsuitable for kernel extensions:

• Unlike in userspace where failures during stack unwinding
crash the program,2 stack unwinding in kernel extensions
cannot fail—kernel extensions must not crash the kernel
and must not leak kernel resources.

• Unwinding generally executes destructors for all existing
objects on the stack, but executing untrusted, user-defined
destructors (via the Drop trait [9] in Rust) is unsafe.

Rex implements its own exception handling framework with
two main components: (1) graceful exit upon exceptions,
which resets the context, and (2) resource cleanup to ensure
release of kernel resources (e.g., reference counts and locks).
Graceful exit. Rust invokes the panic handler upon a panic,
which diverges the control flow from normal execution path.
To gracefully exit the program upon a panic, the control flow
must be redirected back to the normal execution path and
with the correct context (e.g., stack pointer). To ensure such
a graceful exit, Rex implements a small runtime (Figure 4),
which consists of a program dispatcher and a landingpad in the
kernel, as well as a panic handler in the Rex kernel crate. The
dispatcher takes the duty of executing the extension program
(like the eBPF dispatcher). It saves the stack pointer of the
current context into per-CPU memory, switches to a dedicated
program stack (§5.6), sets the termination state (§5.7), and
then calls into the program. If the program exits normally, it
returns to the dispatcher, which switches the stack back and
clears the termination state. Under exceptional cases where
a Rust panic is triggered, the panic handler releases kernel
resources currently allocated by the extension, and transfer
control to the in-kernel landingpad to print debug information
to the kernel ring buffer and return a default error code to the
kernel. Then, the landingpad redirects control flow to a pre-
defined label in the middle of the dispatcher, where it restores
the old value of the stack pointer from the per-CPU storage.
This effectively unwinds the stack and resets the context as if
the extension returned successfully.
Resource cleanup. Correct handling of Rust panics requires
cleaning up resources acquired by the extension. However,
static approaches that rely on the verifier to pre-compute
resources to be released during verification (e.g., object table
in [52]) do not apply to Rex due to the language-verifier gap.

2Theseus [36] implements stack unwinding in the kernel. But, it assumes
that unwinding never fails; faults in unwinding result in kernel failures.

Rex program
rex_prog1:
...
ret

Panic

Rex panic handler
// cleanup resources
...
call rex_landingpad

In-kernel landingpad
rex_landingpad:
// report error
// set default return value
...
jmp rex_exit

In-kernel dispatcher function
rex_dispatcher_func:
// save the callee-saved registers
pushq ...
// switch stack, set termination state
movq %rsp, PER_CPU_VAR(rex_old_sp)
movq PER_CPU_VAR(rex_stack), %rsp
movq ..., PER_CPU_VAR(rex_start_time)
...
// invoke the REX program
call *%rdx
rex_exit:
// reset stack and termination state
movq PER_CPU_VAR(rex_old_sp), %rsp
...
// restore the callee-saved registers
popq ...
ret

Figure 4: Exception handling control flow in Rex

Our insight is that extensions can only obtain resources by
explicitly invoking helper functions. So, Rex records the allo-
cated kernel resources during execution in a per-CPU buffer,
which is in principle like the global heap registry in [82].
Upon a panic, the panic handler takes the responsibility to
correctly release kernel resources, which involves traversing
the buffer and dropping recorded resources.

We implement the cleanup code as part of the panic handler
in the Rex kernel crate, as it is responsible for coordinating
helper function calls that obtain kernel resources. Implement-
ing the cleanup mechanism in the kernel crate ensures safety:
as the code is called upon panic, it must not trigger deadlocks
or yet another Rust panic to fail panic handling. To this end,
we avoid using functions that may panic as much as possible
and explicitly ensure the panic conditions cannot be met in
case their usage is inevitable. This careful design of the Rex
kernel crate frees the cleanup code and drop handlers of locks
and panic-triggering code. Kernel functions invoked by such
code may still hold locks internally, but they are self-contained
and do not propagate to Rex (deadlocks in kernel functions is
out of the scope of Rex). Rex does not execute user-supplied
drop handlers upon panic, as they are not guaranteed to be
safe (i.e., free of a nested panic) under panic handling context.

Rex implements a crash-stop failure model—a panicked
extension is removed from the kernel. Any used maps and
other Rex extensions sharing the maps will also be removed
recursively. This prevents extensions sharing the maps from
running in a potentially inconsistent state—exception han-
dling in Rex already ensures the kernel is left in a good state.

5.6 Kernel stack safety
Kernel extensions should never overflow the kernel stack.
Unlike userspace stacks which grow on demand with a large
maximum size, the stack in kernel space has a fixed size (4
pages on x86-64). The eBPF verifier checks stack safety by
calculating stack size via symbolic execution. However, it
is reported that stack safety is broken in eBPF due to the
difficulties of statically analyzing indirect tail calls [91] and
uncontrolled program nestings [43].

Our insight is that stack safety can be enforced at compile
time to avoid runtime overhead if the extension program has

no indirect or recursive calls, as the stack usage can be stati-
cally computed. Otherwise, it is easy to check stack safety at
runtime. Rex, therefore, takes a hybrid approach and selects
between static and dynamic checks based on the situation.

Static check. The static check is done by a Rex-specific com-
piler pass (§6). If the extension has no indirect or recursive
calls, its total stack usage can be calculated by traversing its
global static callgraph and sum up the size of each call frame.
We turn on fat LTO and use a single Rust codegen unit [8]
for Rex programs to ensure the compiler always has a global
view across all translation units.

Runtime check. For extensions with indirect or recursive
calls, it is hard to calculate the stack usage from the callgraph
due to the presence of unknown edges (indirect calls) and
cycles (recursive calls). Under these cases, Rex performs
runtime checks. The Rex compiler pass first ensures each
function in the program takes less than one page (4K) of stack.
This is more relaxed than the frame size warning threshold
(2K) in Linux and ensures enough stack to handle Rust panics.
Before each function call in the extension, the compiler inserts
a call to the rex_check_stack function from the kernel crate
to check the current stack usage: if the stack usage exceeds
the threshold, it will trigger a Rust panic and terminate the
program safely (§5.5).

To manage stack usage of Rex extensions effectively, Rex
implements a dedicated kernel stack for each extension. The
dedicated stacks are allocated per-CPU and virtually mapped
at kernel boot time with a size of eight pages. Before executing
a Rex extension, the dispatcher (Figure 4) saves the stack
pointer of the current context, and then sets the stack and the
frame pointer (already saved with other callee-saved registers)
to the top of the dedicated stack. When the extension exits,
the original stack and frame pointers are restored.

Rex sets the stack usage threshold to be four pages for
extension code; it reserves the next four pages with following
considerations: (1) helper functions are not visible at compile
time but they also account for stack usage during execution;
we use four pages as the de facto stack size used by the
kernel itself, and (2) since stack usage of each function is
limited to one page of stack, in the worse case, the remaining
stack space is at least three pages when rex_check_stack

triggers a Rust panic. Since the panic handler is implemented
in the kernel crate and does not change with programs, this
worse-case guarantee empirically leaves enough space for
panic handling and stack unwinding. Rex’s dynamic approach
achieves stronger stack safety than that of eBPF.

5.7 Termination
Termination is an important property of kernel extensions. In
eBPF, an extension with a back edge or exceeds the instruc-
tion limit will be rejected, regardless whether it eventually
terminates. Since it is challenging to statically reason about
termination of an arbitrary program, the eBPF termination

semantic creates many false positives and greatly contributes
to the language-verifier gap. KFlex [52] lifts the back edge re-
striction by inserting cancellation points in eBPF bytecode on
all back edges during verification, which triggers termination
at runtime. However, back edge analysis is non-trivial outside
eBPF bytecode and is unreliable for general Rust programs.

Instead of following eBPF’s termination semantic that con-
tributes to the language-verifier gap, Rex employs a termina-
tion semantic based on extension execution time. Rex imple-
ments termination support in its runtime, which interrupts and
terminates extensions that run for too long. Rex limits the run
time of extensions by leveraging kernel timers as watchdogs.
Rex builds the runtime on the high resolution timer (hrtimer)
subsystem in Linux [56]. Since hrtimer callbacks execute
in hardware timer interrupts, they are capable of interrupting
the contexts in which most extensions execute (soft interrupts
and task context [42]). Since hardware timer interrupts are
periodically raised by the processor, regardless whether an
hrtimer is present, executing timer callbacks in this existing
hardware timer interrupt adds no extra interrupt or context
switch, keeping the watchdog overhead minimal.

Rex sets one timer for each CPU to avoid inter-core commu-
nication, in contrast to using a single, global timer to handle
programs from all CPUs. Each timer only needs to monitor
extensions running on the core. Rex arms the timers at kernel
boot time, which are triggered periodically with a constant
timeout, and re-armed each time after firing.3

Rex implements its watchdog logic in the timer handlers.
When a timer fires, its handler suspends any soft interrupt or
task context, and saves its registers. The handler then checks
the current CPU on whether the termination timeout of the
Rex extension in the stopped context has been reached. This
is done by comparing the extension start time (stored as a per-
CPU state as shown in Figure 4) with the current time. If the
extension exceeds the threshold, the timer handler overwrites
the saved instruction pointer register to the panic handler
(§5.5). After returning from the timer interrupt, the extension
executes its panic handler, which cleans up kernel resources
and gracefully exits. Rex sets both the timer period and run-
time threshold to the default RCU CPU stall timeout (Rex
extensions run in RCU locks as they use eBPF hook points).

Rex defers termination when the extension is running ker-
nel helper functions to avoid disrupting the kernel’s internal
resource bookkeeping; it also does not terminate an extension
if it is in the panic handler. Rex uses a per-CPU tristate flag to
track the state of an extension: (1) executing extension code,
(2) executing kernel helpers or panic handlers, and (3) termi-
nation requested. A helper call changes the state from 1 to 2.
When executing the timer handler, if the flag is at state 2, the
termination handler modifies it to state 3 without changing
the instruction pointer. When a helper returns, if the flag is at

3Disarming the timer when no extension is running saves CPU cycles, but
incurs high overhead due to timer setup on the hot path of extension execution,
especially for frequently triggered extensions (e.g., XDP extensions [5]).

state 3, the panic handler is called to gracefully exit.
A corner case of this design is deadlock. Since spinlock

acquisition in Rex is implemented by a kernel helper func-
tion, a deadlocked program will never return from the helper,
and therefore will never be terminated properly. Rex follows
eBPF’s solution toward deadlocks, where a program can only
take one lock at a time. This is achieved by using a per-CPU
variable to track whether the program currently holds a lock—
a program trying to acquire a second lock will trigger a Rust
panic. We note that if the ability of holding multiple locks at
the same time is desired, the kernel spinlock logic can be mod-
ified to check the termination state of Rex programs during
spinning and terminate a deadlocked program accordingly.
Limitation. Rex uses hard interrupts, and thus cannot in-
terrupt extensions that are already executing in hard or non-
maskable interrupts [42] (e.g., hardware perf-event programs).
Such extensions are not targeted by Rex, as they are supposed
to be small, simple, and less likely to encounter the language-
verifier gap. Note that Rex extensions and eBPF extensions
are not mutually exclusive and can co-exist.

Moreover, the termination of a timed-out Rex extension
may be delayed if the extension is already interrupted by an-
other event when the timer triggers (the extension registers
will not be available to the timer handler). Rex needs to wait
for a triggering of the timer that directly interrupts the ex-
tension. However, to date, we have never encountered such
delayed termination in our experiments (§7).

6 Implementation

We implement Rex on Linux v6.11. Rex currently supports
five eBPF program types (tracepoint, kprobe, perf-event, XDP,
and TC) and shares their in-kernel hookpoints. Rex only in-
cludes helpers for kernel interactions. Helpers introduced
due to contraints posed by the eBPF verifier (e.g., bpf_loop,
bpf_strtol, and bpf_strncmp) are entirely excluded by Rex.
Kernel crate. The Rex kernel crate is implemented in 3.5K
lines of Rust code, among which 360 lines are unsafe Rust
code. The kernel crate contains the following components:

• Helper function interface in Rex is implemented on top of
eBPF helpers, with wrapping code that allows Rex exten-
sions to invoke helpers with safe Rust types.

• Kernel data-type bindings are generated for the extension
to access kernel data types defined in C. Rex uses rust-
bindgen [22] to automatically generate kernel bindings
and integrates it into the build process of extensions. Rex
programs need to be rebuilt for each kernel they target to
account for ABI differences in kernel data types.

• Program context in Rex is wrapped in a Rust struct, which
marks the context as private and implements getter methods
for its public fields.

Kernel support. Rex implements the extension load code
and the runtime in the kernel in 2.2K lines of C code on

(b) Rex-BMC (c) Original eBPF-BMC(a) Algorithm Desc.

• eBPF-BMC must write additional code to workaround the verifier, e.g., the dedicated check
on BMC_MAX_PACKET_LENGTH (L2) minimizes # jump instructions to fit in verifier limit.
In Rex-BMC, no bound check is needed because of the lift of verifier restrictions and
inherent safety of Rust slice that confines data_end (L4).
The 4 levels of nesting (L4,20,25,26) in eBPF-BMC is reduced by converting a for loop
(L2) with complicated conditions (L4) into a clean chain of high-order functions with
closures in Rex-BMC (L1, L9).

•

•

1 let set_iter = payload
2 .windows(4) // 4 chars as a slice
3 .enumerate()
4 .filter_map(|(i, v)|
5 if v == b"set " { Some(i) } else { None }
6); // found the SET command
7 for index in set_iter {
8 ... // set payload index via SET command
9 payload

10 .iter()
11 .take_while(|&&c| c != b' ')
12 .for_each(|&c| {
13 ... // calculate the key’s hash value
14 });
15 ... // invalidate Memcached cache entry
16} // if the key is found in cache

1 #pragma clang loop unroll(disable)
2 for (unsigned int off = 0; off < BMC_MAX_PACKET_LENGTH &&
4 payload + off + 1 <= data_end; off++) {
5 if (set_found == 0 && payload[off] == 's' &&
6 payload + off + 3 <= data_end &&
7 payload[off + 1] == 'e' && payload[off + 2] == 't') {
9 ... // move offset after the SET command
10 set_found = 1;
11 } else if (key_found == 0 && set_found == 1 &&
12 payload[off] != ' ') {
13 if (payload[off] == '\r’) {
14 set_found = 0; key_found = 0;
16 } else {
17 ... // found the start of the key
18 key_found = 1;
19 }
20 } else if (key_found == 1) {
21 if (payload[off] == ' ') {
22 ... // found the end of the key
23 set_found = 0; key_found = 0;
25 } else {
26 if (...) {...} // calculate the key’s hash value
27 } // invalidate Memcached cache entry
28 } // if the key is found in cache
29}

Extract SET command
from the XDP payload.
If SET command found,
search for corresponding
key in payload.
If the key is found in the
payload, calculate its
hash value.

If the key is found in the
cache, invalidate the
cache entry.

Figure 5: Cache invalidation implementation of Rex-BMC and eBPF-BMC; Rex leads to cleaner, simpler code.

vanilla Linux. To load an extension, the kernel parses the ELF
executable of the extension and locates all the LOAD segments
in the executable. It then allocates new pages and maps the
LOAD segments into the kernel address space based on the size
and permissions of the segments. The load function is respon-
sible for fixups on the program code to resolve referenced
kernel helpers and eBPF maps. The Rex runtime in the kernel
consists of the stack unwinding mechanisms (§5.5), support
for dedicated kernel stack (§5.6) and termination (§5.7).
Compiler support. Rex implements a compiler pass for Rex-
specific compile-time instrumentations on the stack (§5.6).
We take advantage of Rust’s use of LLVM [29] as its default
code generation backend and implement the pass in LLVM.
A Rex-specific compiler switch is also added to the Rust
compiler frontend (rustc [30]) to gate the Rex compiler pass.

7 Evaluation
We evaluate Rex in terms of its usability and performance
(with both macro and micro benchmarking).

7.1 Usability
Measuring usability is challenging. We evaluate Rex in
two ways: (1) heuristic evaluation on whether it saves
workarounds to the language-verifier gap, and (2) our dog-
fooding experience of using Rex to implement a large, com-
plex extension (BMC [55]). Overall, we find that Rex enables
developers to write simpler and cleaner code.
Eliminating workarounds. Because Rex introduces no
language-verifier gap, none of the workarounds in §3 is
needed in writing Rex extensions.

• Rex extensions have no limit on program size and com-
plexity. There is no need to artificially refactor extension
programs into smaller or simpler ones (§3.1).

• There is no need to artificially make Rex extensions verifier-
friendly (§3.1). In fact, by decoupling static analysis from
the kernel, Rex can enable new analysis (e.g., by allowing
compilers to optimize for extra analysis/verification [99]).

• For the same reason, developers no longer need to tweak
code to assist verification (§3.1).

• Developers no longer need to manage different verifier bugs
across kernel versions (§3.1). The Rust compiler can have
bugs and break safety guarantees, but it is arguably easier
to upgrade than the kernel for fixes.

• Rex enables developers to use rich builtin intrinsics defined
by the Rex toolchain without reinventing wheels (§3.1).

Case study: Rex-BMC We rewrite BMC [55] as a Rex ker-
nel extension (Rex-BMC), which was originally written in
eBPF extensions (eBPF-BMC). Rex-BMC is not a line-by-
line translation of eBPF-BMC, because Rex provides a more
friendly programming experience (e.g., no need to split pro-
grams due to the verifier limit; see §3.1). Rex-BMC covers all
safety aspects discussed in §5. The extension accesses packet
payloads as Rust slices that provide memory safety (§5.2) and
safe exception handling (§5.5), leverages extended type safety
(§5.3) from Rex to reinterpret payload bytes into Memcached
headers, and uses spinlocks that are safely managed via RAII
(§5.4). Kernel stack checks (§5.6) and termination support
(§5.7) are also covered by Rex-BMC as they are not bound to
specific program implementations. Rex-BMC does not con-
tain indirect calls, and thus does not invoke runtime stack
checks. Additionally, Rex-BMC uses four helper functions
from the Rex kernel crate to perform map accesses and packet
manipulations. In this section, we discuss Rex-BMC from the
usability perspective and measure its performance in §7.2.

Our experience shows that Rex enables cleaner and simpler
extension code, compared to eBPF. Essentially, Rex enables

us to focus on key program logic without the overhead of
passing the verifier. For example, we no longer need to divide
code into in parts, add auxiliary code to help the verifier, deal-
ing with tail calls and state transfer, etc. In addition, we can
directly use Rust’s builtin language features and libraries (e.g.,
iterators and closures). As one metric, Rex-BMC is written in
326 lines of Rust code. In comparison, eBPF-BMC is written
in 513 lines of C code (splitting into seven programs).

Figure 5 compares the code snippets of eBPF-BMC and
Rex-BMC that implement cache invalidation, respectively,
as a qualitative example. The checks in eBPF-BMC code,
required by the eBPF verifier, including these for offset and
data_end limits, are now being enforced via the inherent lan-
guage features of Rust, such as slices with bound checks in
Rex (L2 and L10). The check on BMC_MAX_PACKET_LENGTH,
which serves as a constraint to minimize the number of jump
instructions to circumvent the eBPF verifier, is no longer
needed. Other checks for identified SET commands and loops
states can be implemented with built-in functions and closures
in an easy and clean way (L4–L6 and L11).

Moreover, with the elimination of program size and com-
plexity limits in Rex-BMC, developers no longer have to save
the computation state in a map across tail calls, which leads
to a clearer and more efficient implementation.

Note that the usability benefit does not come from the ex-
pressiveness difference between Rust and C, but from closing
the language-verifier gap via Rex. Evidently, the cleaner code
of Rex-BMC would fail the verifier if it were to be compiled
into eBPF (e.g., via Aya [3]): the compiler is unable to gen-
erate verifier-friendly code for convenient language features
such as slices, and the verifier complexity limits will always
be an issue. Rex allows us to fully leverage Rust’s expressive-
ness without being constrained by verification issues.

7.2 Macro benchmark
Rex’s usability benefits do not come with a performance
cost. We show that Rex extensions deliver comparable perfor-
mance as eBPF extensions. Rex-BMC achieves a throughput
of 1.98M requests per second (RPS) on 8 cores, which is
slightly higher than eBPF-BMC (1.92M).

Our setup consists of a server machine and a client ma-
chine. The server machine runs the Rex custom kernel based
on Linux v6.11.0 on an AMD EPYC 7551P 32-Core proces-
sor with 112 GB memory without SMT and Turbo. The client
machine runs a vanilla v6.11.0 Linux kernel on an AMD
Ryzen 9 9950X processor with 96 GB memory. Both ma-
chines are equipped with Mellanox ConnectX-3 Pro 40GbE
NICs and are connected back-to-back using a single port.

We evaluate the throughput of (1) Memcached which binds
multiple UDP sockets to the same port [55], (2) Memcached
with eBPF-BMC, and (3) Memcached with Rex-BMC. For
each setup, we vary the number of CPU cores for Mem-
cached server and NIC IRQs and pin one Memcached thread
onto each available core. We use the same workloads as in

1 2 3 4 5 6 7 8
of cores

0.0
0.4
0.8
1.2
1.6
2.0

T
hr

ou
gh

pu
t

(M
ill

io
n

R
PS

) Memcached eBPF-BMC Rex-BMC

Figure 6: Throughput of Memcached, with eBPF-BMC, and
with Rex-BMC under different number of cores.

BMC [55], albeit with a smaller number of Memcached keys.
Figure 6 shows the throughput of the three setups under

different numbers of CPU cores. Memcached processes all
requests in userspace with the overhead of the kernel network
stack, achieving only 37K RPS on a single core and 365K
RPS on 8 cores. Both eBPF-BMC and Rex-BMC achieve a
much higher throughput as they process a large fraction of
requests at NIC driver level without going through the ker-
nel network stack. With 8 cores, eBPF-BMC and Rex-BMC
achieve a throughput of 1.92M and 1.98M, and a performance
benefit of 5.26x and 5.43x, respectively. The slight perfor-
mance improvement over eBPF is attributable to the elimina-
tion of overheads of tail calls and associated state-passing via
maps, along with optimizations in the rustc frontend and x86
backend, despite the overhead of additional runtime checks.

7.3 Micro benchmark
Several of Rex’s design decisions could introduce overheads,
despite being invisible in the Rex-BMC evaluation. We use
specially designed microbenchmarks to stress our design and
measure overheads. We show that overheads exist in some
pessimistic cases, but have negligible impact in real-world
scenarios. All experiments are performed on the same server
machine in the Rex-BMC experiments (§7.2).

Setup and teardown. Entering and exiting a Rex program
requires Rex-specific operations (Figure 4). Rex’s use of a
dedicated stack requires saving the stack pointer and setting
the new stack and frame pointer to the dedicated stack (and
restoring to the saved values after the extension exits). Rex
also needs to set up the per-CPU state used by its termina-
tion mechanism (§5.7). In total, these operations add eight
instructions on the execution path in Rex. To measure the
overhead, we implement an empty extension program in both
eBPF and Rex and record their execution time (including the
program dispatcher). As shown in Table 2, the measured exe-
cution time of the empty Rex and eBPF programs only differ
in around a nanosecond on average.

Exception handling Rex’s safe cleanup for exception han-
dling requires recording allocated resource at runtime (§5.5),
which, compared to eBPF, adds overhead. We measure the
overhead using a program that acquires and then immediately
releases an eBPF spinlock. Since the acquired spinlock needs

Table 2: Time to execute an empty extension program and to
acquire and release a spinlock in eBPF and Rex (nanosecond)

Extension Empty prog runtime Spinlock runtime

eBPF 42.1 ± 4.1 ns 130.4 ± 20.3 ns
Rex 42.6 ± 5.8 ns 183.1 ± 27.5 ns

0 10 20 30
Call depth

0
100
200
300
400
500

E
xe

cu
tio

n
tim

e
(n

s) eBPF tail call
Rex recursive call

Figure 7: eBPF tail call and
Rex recursive call time

Array
map

Hash
map

Static
variable

0

15

30

45

60

75

M
ap

lo
ok

up
tim

e
(n

s) eBPF
eBPF (no-inline)
Rex

Figure 8: Map lookup time
under various setups

to be released upon Rust panics, Rex’s cleanup mechanism
records it in its per-CPU buffer. Additionally, Rex sets up a
per-CPU state flag to indicate execution of a helper function
(§5.7). The program is implemented in both eBPF and Rex
and the time used to acquire and release the spinlocks are
measured. Table 2 shows that the runtime difference between
eBPF and Rex is roughly 50 nanoseconds. We argue that such
runtime difference is negligible in real world use cases, as ex-
emplified by Rex-BMC (§7.2) that uses fine-grained locking
(one spinlock per map entry).

Stack check. Stack checks are added before function calls in
Rex extensions that contain indirect or recursive calls (§5.6).
We implement recursive extension programs in both eBPF
and Rex to measure the overhead. The recursive function calls
itself for a controlled number of times. In Rex, we pass the
call depth as the argument to the recursive function; since
eBPF does not support recursive functions, we use eBPF
tail calls to implement the logic—since it is inconvenient to
pass arguments to tail-called programs (§3.1), we use a static
variable to set the call depth. Figure 7 plots execution time of
the recursive programs with call depths from 1 to 33 (eBPF
cannot do more than 33 tail calls). Rex is roughly 3x faster
than eBPF. The overhead of eBPF is due to its runtime check
on tail-call count limit and accessing the static variable, which
is a map in eBPF (not a register as in Rex’s normal calls).

Map access Map access in Rex is expected to have more
overhead than in eBPF. First, Rex implements wrapping code
to enforce safety of helper function calls (§6). Moreover, the
eBPF JIT compiler inlines the helper function for map lookup
at load time as a performance optimization; however, inlining
is not available in Rex (no JIT in Rex). We measure map
lookup time of Rex, compared with eBPF, with and without
inlining, including array maps, hash maps, and static variables.
In eBPF, static variables are converted into maps; we use a

static Rust atomic variable in Rex, as the counterpart of a
static variable map in eBPF. Figure 8 shows the lookup time
of different maps in eBPF and Rex, respectively. We find that
inlining map lookups in eBPF are ∼0.5ns faster on array maps
and ∼1.2ns faster on hash maps. An additional slowdown of
2ns–4ns is present in Rex over non-inlined eBPF, due to the
wrapping code. Static variables in eBPF are always accessed
via direct load without invoking a helper. Hence, their access
latency is almost the same to accessing Rust atomic variables.

8 Discussion
Verification without language-verifier gaps. Rex currently
uses language features of Rust to ensure safety of kernel ex-
tensions. This approach defers the checking of some safety
properties to the runtime (e.g., termination, integer errors).
It may be possible to minimize the amount of runtime er-
rors by incorporating Rust-based verification techniques, e.g.,
ensuring freedom of panics [15, 24, 69, 70, 105]. Certainly,
push-button verification techniques that use symbolic execu-
tion such as PanicCheck [105] are likely to re-introduce the
language-verifier gap. We suspect that using verification tech-
inques that combine proofs and programming [27, 28, 69, 70],
such as Verus for Rust may allow Rex to reduce runtime errors
without the language-verifier gap.
Dynamic memory allocation. eBPF has recently supported
dynamic allocation [51] that allows extension programs to
request memory from the kernel using allocation kfuncs [46].
Rex currently does not support dynamic memory allocation.
We plan to integrate memory allocation [1] of Rust with the
eBPF all-context allocator [44], granting Rex dynamic alloca-
tion. Dynamic allocation enhances programmability of exten-
sion programs and opens up more advanced use cases [52].
It also makes more components of the Rust standard library
available, notably the collection and smart pointer types with
automatic memory management.
Kernel crate maintenance. The Rex kernel crate inevitably
needs to use unsafe Rust, as it directly interacts with kernel
functions and variables defined in C. As a principle, unsafe
Rust code must not be used for escaping safety checks but only
when it is the last resort (mostly for foreign function interface,
FFI). This keeps the scope of unsafe Rust at its minimum—
the Rex kernel crate only leverages unsafe Rust necessary for
FFI interaction and contributes to about 10% (360 lines) of
kernel crate code. We explicitly check and ensure the precon-
ditions of unsafe code blocks (e.g., argument requirements
of eBPF helper functions) for the soundness of the Rex crate.
As unsafe code is isolated from extension programs and man-
aged at a central location by trusted maintainers, we are not
particularly concerned about its maintainability.

9 Related Work

Aya-rs [3] provides an infrastructure that allows developers to
write eBPF programs in Rust and compile to eBPF bytecode.

Aya is fundamentally different from Rex in that it does not rely
on the Rust language for safety properties, but relies on the in-
kernel eBPF verifier. Programming in Aya ignores the safety
aspect of Rust and only treats it as a frontend language for
eBPF—unsafe code blocks that directly use raw pointers are
common. Differently, in Rex, one can safely use the high-level
language features of Rust exposed by Rex. These features are
important to write more intuitive, cleaner, and more optimized
code for large, complex kernel extensions.

Improving eBPF. eBPF has evolved from simple use cases
like packet filtering [75, 77] into a general-purpose kernel
extension language and programming framework that enables
many innovative projects [11, 40, 55, 59, 60, 79, 87, 90, 106–
108]. Recent work is making active progress to improve the
correctness and security of the eBPF infrastructure, including
fuzzing and bug finding [61,78,94,95], formal verification [84,
85, 98, 100], sandboxing [65, 72, 73], and integrating with
hardware protection mechanisms [74, 104]. eBPF’s design,
which relies on an in-kernel static verifier for extension safety,
inevitably creates the language-verifier gap (§3). In contrast,
Rex provides an alternative to develop and maintain large,
complex kernel extensions directly with high-level language
safety, avoiding the language-verifier gap.

Other frameworks. The idea of building safe OS extensi-
bility using safe languages was proposed by SPIN [34] and
revisited by Singularity [62], Tock [71], and a few recent dis-
cussions [39, 63, 76]. However, adopting them in practice is
challenging as they are based on clean-slate OS designs. Rex
develops a practical kernel extension framework for Linux,
taking the opportunity of recent support of Rust as a safe
language for OS code. It addresses the key challenges of en-
forcing safe code only, interfacing with unsafe C code, and
providing safety guarantees beyond language-based safety.

Prior works such as VINO [89] explore extension safety
through Software Fault Isolation (SFI) with unsafe languages.
SFI is in principle implemented as runtime checks, which not
only causes programming errors to be completely uncaught
before deployment but also leads to non-trivial overhead.
While recent works [81,103] have demonstrated low-overhead
SFI techniques, we note that Rex represents a different design
tradeoff and complements SFI. By leveraging language-based
safety, Rex pushes a good set of safety checks into compile
time, allowing programming errors to be detected before exe-
cution. It strikes a balance between static checks and runtime
protection to close the language-verifier gap.

Similar to SFI, hardware-based isolation mechanisms such
as Intel MPK [49] offer alternative paths toward extension
safety [74, 104]. However, such mechanisms alone usually do
not satisfy all the safety requirements of kernel extensions,
e.g., Intel MPK does not handle safety of kernel interactions
as it cannot ensure a lock acquired will be properly released.

KFlex [52] is a recent kernel extension framework built on
top of eBPF. KFlex aims to improve the flexibility of eBPF to

let developers express diverse functionality in extensions. It
employs an efficient runtime by co-designing it with the ex-
isting eBPF verifier: (1) its SFI elides checks already done by
the verifier for efficiency, and (2) its termination mechanism
uses the verifier to statically compute the kernel resources
acquired by the extension. Rex made the same design choice
as KFlex to use a lightweight runtime for safety properties
that are hard to check statically. Unlike KFlex, which is co-
designed with the eBPF verifier, Rex eliminates the verifier
to close the language-verifier gap.

BCF [93] is a recent proposal to enhance eBPF’s in-kernel
verification with help from user space, asking for proof when
the verifier fails to reason about certain program properties.
The idea echoes proof-carrying code [83] which asks a pro-
gram to attach a formal proof that its code obeys the safety
policy. BCF leverages the eBPF verifier’s range analysis and
symbolic execution for proof generation but still requires de-
velopers to specify safety conditions to aid the generation. Its
uses of the verifier still lead to the language-verifier gap.

Rust for OS kernels. Rust has been embraced by modern
OSes [23,101] as practical language which leads to safer code.
Recent work shows the promises to build new OS kernels
using Rust [36,39,71,82]. We claim no novelty of using Rust
as a language. In fact, a safe language alone does not lead to
system safety, as exemplified by Rust kernel modules [48].
Rex shows an example of how to build upon language-based
safety to enable and enforce safe kernel extension programs.

10 Conclusion
We build Rex, a new kernel extension framework that closes
the language-verifier gap. We believe that closing the gap is
essential to the programming experience and maintainability
of kernel extensions, especially those that embody large, com-
plex programs for advanced features. Rex provides a solution
that allows kernel extensions to be developed and maintained
in a high-level language, while providing desired safety guar-
antees as in existing frameworks like eBPF.

Acknowledgement
We appreciate the help from our shepherd Diyu Zhou, as
well as the anonymous reviewers, on improving this paper.
We thank Zhenyu Huang, Manvik Nanda, Quan Hao Ng, Raj
Sahu, Wentao Zhang, and Md Sayeedul Islam for their par-
ticipation in the project. We also thank Jiyuan Zhang, Di
Jin, Hao Lin, James Bottomley, and Darko Marinov for their
feedback and discussion. We used Rex to develop Machine
Problems (MPs) for CS 423 (Operating System Design) at
the University of Illinois Urbana-Champaign in Fall 2022,
2023, and 2024. We thank students in CS 423 for being the
beta users of Rex, which provides valuable feedback for us to
improve the usability of Rex. This work was funded in part by
NSF CNS-1956007, NSF CNS-2236966, and an IBM-Illinois
Discovery Accelerator Institute (IIDAI) grant.

References

[1] alloc - Rust. https://doc.rust-lang.org/alloc/index.
html.

[2] auto_traits. https://doc.rust-lang.org/beta/
unstable-book/language-features/auto-traits.
html.

[3] Aya-rs. https://aya-rs.dev/.

[4] Bounds - Rust By Example. https://doc.rust-lang.
org/rust-by-example/generics/bounds.html.

[5] BPF and XDP Reference Guide. https://docs.cilium.
io/en/latest/bpf/index.html.

[6] Cilium - Cloud Native, eBPF-based Networking, Observabil-
ity, and Security. https://cilium.io/.

[7] Clippy Lints. https://rust-lang.github.io/rust-
clippy/master/index.html.

[8] Codegen Options - The rustc book. https://doc.rust-
lang.org/rustc/codegen-options/index.html.

[9] Drop in core::ops - Rust. https://doc.rust-lang.org/
core/ops/trait.Drop.html.

[10] eBPF implementation that runs on top of Windows. https:
//github.com/microsoft/ebpf-for-windows.

[11] Extensible Scheduler Class. https://docs.kernel.org/
next/scheduler/sched-ext.html.

[12] Fuzzing. https://rustc-dev-guide.rust-lang.org/
fuzzing.html.

[13] Generic parameters. https://doc.rust-lang.org/
reference/items/generics.html.

[14] Itanium C++ ABI: Exception Handling ($Revision: 1.22
$). http://itanium-cxx-abi.github.io/cxx-abi/
abi-eh.html.

[15] Kani Rust Verifier. https://github.com/model-
checking/kani.

[16] Katran - A high performance layer 4 load balancer. https:
//github.com/facebookincubator/katran.

[17] Lints - The rustc book. https://doc.rust-lang.org/
rustc/lints/index.html.

[18] Monomorphization. https://rustc-dev-guide.rust-
lang.org/backend/monomorph.html.

[19] negative_impls. https://doc.rust-lang.org/beta/
unstable-book/language-features/negative-
impls.html.

[20] no_std - The Embedded Rust Book. https://docs.rust-
embedded.org/book/intro/no-std.html.

[21] RAII - Rust By Example. https://doc.rust-lang.org/
rust-by-example/scope/raii.html.

[22] rust-bindgen. https://github.com/rust-lang/rust-
bindgen.

[23] Rust for Linux. https://rust-for-linux.com/.

[24] Rust Verification Tools. https://project-oak.github.
io/rust-verification-tools/.

[25] Security Hardening: Use of eBPF by unprivileged users
has been disabled by default. https://www.suse.com/
support/kb/doc/?id=000020545.

[26] std - Rust. https://doc.rust-lang.org/std/index.
html.

[27] The Coq Proof Assistant. https://coq.inria.fr/.

[28] The Dafny Programming and Verification Language. https:
//dafny.org/.

[29] The LLVM Compiler Infrastructure. https://llvm.org/.

[30] The rustc book. https://doc.rust-lang.org/stable/
rustc/.

[31] Trait objects. https://doc.rust-lang.org/reference/
types/trait-object.html.

[32] What is RCU? – “Read, Copy, Update”. https://docs.
kernel.org/RCU/whatisRCU.html.

[33] BALASUBRAMANIAN, A., BARANOWSKI, M. S., BURTSEV,
A., PANDA, A., RAKAMARIĆ, Z., AND RYZHYK, L. System
Programming in Rust: Beyond Safety. In Proceedings of the
16th ACM Workshop on Hot Topics in Operating Systems
(HotOS’17) (May 2017).

[34] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
FIUCZYNSKI, M. E., BECKER, D., CHAMBERS, C., AND

EGGERS, S. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95) (Dec.
1995).

[35] BHAT, S., AND SHACHAM, H. Formal Verification
of the Linux Kernel eBPF Verifier Range Analysis.
https://sanjit-bhat.github.io/assets/pdf/ebpf-
verifier-range-analysis22.pdf. (May 2022).

[36] BOOS, K., LIYANAGE, N., IJAZ, R., AND ZHONG, L. The-
seus: an Experiment in Operating System Structure and State
Management. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20)
(Nov. 2020).

[37] BORKMANN, D. bpf: Fix verifier issue in fib_redirect.
https://github.com/cilium/cilium/commit/
efb5d6509fea263bd6d36998f8e524d9942b8a79. (Mar.
2023).

[38] BORKMANN, D. bpf: fix verifier’s ctx port access in
post bind hooks. https://github.com/cilium/cilium/
commit/394e72478a8d120dab0bff2c41db77695877ce57.
(Mar. 2023).

[39] BURTSEV, A., NARAYANAN, V., HUANG, Y., HUANG, K.,
TAN, G., AND JAEGER, T. Evolving Operating System Ker-
nels Towards Secure Kernel-Driver Interfaces. In Proceed-
ings of the 19th ACM Workshop on Hot Topics in Operating
Systems (HotOS’23) (June 2023).

[40] CAO, X., PATEL, S., LIM, S. Y., HAN, X., AND PASQUIER,
T. FetchBPF: Customizable Prefetching Policies in Linux
with eBPF. In Proceedings of the 2024 USENIX Annual
Technical Conference (USENIX ATC’24) (July 2024).

https://doc.rust-lang.org/alloc/index.html
https://doc.rust-lang.org/alloc/index.html
https://doc.rust-lang.org/beta/unstable-book/language-features/auto-traits.html
https://doc.rust-lang.org/beta/unstable-book/language-features/auto-traits.html
https://doc.rust-lang.org/beta/unstable-book/language-features/auto-traits.html
https://aya-rs.dev/
https://doc.rust-lang.org/rust-by-example/generics/bounds.html
https://doc.rust-lang.org/rust-by-example/generics/bounds.html
https://docs.cilium.io/en/latest/bpf/index.html
https://docs.cilium.io/en/latest/bpf/index.html
https://cilium.io/
https://rust-lang.github.io/rust-clippy/master/index.html
https://rust-lang.github.io/rust-clippy/master/index.html
https://doc.rust-lang.org/rustc/codegen-options/index.html
https://doc.rust-lang.org/rustc/codegen-options/index.html
https://doc.rust-lang.org/core/ops/trait.Drop.html
https://doc.rust-lang.org/core/ops/trait.Drop.html
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://docs.kernel.org/next/scheduler/sched-ext.html
https://docs.kernel.org/next/scheduler/sched-ext.html
https://rustc-dev-guide.rust-lang.org/fuzzing.html
https://rustc-dev-guide.rust-lang.org/fuzzing.html
https://doc.rust-lang.org/reference/items/generics.html
https://doc.rust-lang.org/reference/items/generics.html
http://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
http://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://github.com/model-checking/kani
https://github.com/model-checking/kani
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://doc.rust-lang.org/rustc/lints/index.html
https://doc.rust-lang.org/rustc/lints/index.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://doc.rust-lang.org/beta/unstable-book/language-features/negative-impls.html
https://doc.rust-lang.org/beta/unstable-book/language-features/negative-impls.html
https://doc.rust-lang.org/beta/unstable-book/language-features/negative-impls.html
https://docs.rust-embedded.org/book/intro/no-std.html
https://docs.rust-embedded.org/book/intro/no-std.html
https://doc.rust-lang.org/rust-by-example/scope/raii.html
https://doc.rust-lang.org/rust-by-example/scope/raii.html
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://rust-for-linux.com/
https://project-oak.github.io/rust-verification-tools/
https://project-oak.github.io/rust-verification-tools/
https://www.suse.com/support/kb/doc/?id=000020545
https://www.suse.com/support/kb/doc/?id=000020545
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/std/index.html
https://coq.inria.fr/
https://dafny.org/
https://dafny.org/
https://llvm.org/
https://doc.rust-lang.org/stable/rustc/
https://doc.rust-lang.org/stable/rustc/
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/types/trait-object.html
https://docs.kernel.org/RCU/whatisRCU.html
https://docs.kernel.org/RCU/whatisRCU.html
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://github.com/cilium/cilium/commit/efb5d6509fea263bd6d36998f8e524d9942b8a79
https://github.com/cilium/cilium/commit/efb5d6509fea263bd6d36998f8e524d9942b8a79
https://github.com/cilium/cilium/commit/394e72478a8d120dab0bff2c41db77695877ce57
https://github.com/cilium/cilium/commit/394e72478a8d120dab0bff2c41db77695877ce57

[41] CHAIGNON, P. bpf: Avoid 32bit assignment of packet
pointer. https://github.com/cilium/cilium/commit/
847014aa62f94e5a53178670cad1eacea455b227. (May
2023).

[42] CHAIKEN, A. IRQs: the Hard, the Soft, the Threaded and
the Preemptible. In Embedded Linux Conference Europe
(ELCE’16). https://events.static.linuxfound.org/
sites/events/files/slides/Chaiken_ELCE2016.pdf.
(Oct. 2016).

[43] CHINTAMANENI, S., SOMARAJU, S. R., AND WILLIAMS,
D. Unsafe kernel extension composition via BPF program
nesting. In Proceedings of the 2nd ACM SIGCOMM 2024
Workshop on eBPF and Kernel Extensions (eBPF’24) (Aug.
2024).

[44] CORBET, J. A BPF-specific memory allocator. https://
lwn.net/Articles/899274/. (June 2022).

[45] CORBET, J. A first look at Rust in the 6.1 kernel. https:
//lwn.net/Articles/910762/. (Oct. 2022).

[46] CORBET, J. Calling kernel functions from BPF. https:
//lwn.net/Articles/856005/. (May 2021).

[47] CORBET, J. Reconsidering unprivileged BPF. https://lwn.
net/Articles/796328/. (Aug. 2019).

[48] CORBET, J. Rust-for-Linux developer Wedson Almeida Filho
drops out. https://lwn.net/Articles/987635/. (Aug.
2024).

[49] CORBET, J. Memory protection keys. https://lwn.net/
Articles/643797/, May 2015.

[50] DUBERSTEIN, T. bpf: Remove builtin global func-
tions. https://github.com/aya-rs/aya/pull/698.
(July 2023).

[51] DWIVEDI, K. K. bpf: Introduce bpf_obj_new.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
958cf2e273f0929c66169e0788031310e8118722. (Nov.
2022).

[52] DWIVEDI, K. K., IYER, R., AND KASHYAP, S. Fast, Flexible,
and Practical Kernel Extensions. In Proceedings of the 30th
ACM Symposium on Operating Systems Principles (SOSP’24)
(Nov. 2024).

[53] EDGE, J. BPF and security. https://lwn.net/Articles/
946389/. (Oct. 2023).

[54] FAHNDRICH, M., AIKEN, M., HAWBLITZEL, C., HODSON,
O., HUNT, G., LARUS, J., AND LEVI, S. Language Support
for Fast and Reliable Message-based Communication in Sin-
gularity OS. In Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys’06)
(Apr. 2006).

[55] GHIGOFF, Y., SOPENA, J., LAZRI, K., BLIN, A., AND

MULLER, G. BMC: Accelerating Memcached using Safe In-
kernel Caching and Pre-stack Processing. In Proceedings of
the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’21) (Apr. 2021).

[56] GLEIXNER, T., AND MOLNAR, I. hrtimers - subsystem for
high-resolution kernel timers. https://docs.kernel.org/
timers/hrtimers.html.

[57] GRAF, T. bpf: Workaround for verifier bug in proxy hairpin
code. https://github.com/cilium/cilium/commit/
e38a92115620125b19c8761f35f6709e71c34511. (May
2019).

[58] GUPTA, P. bpf: Disallow unprivileged bpf by de-
fault. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
8a03e56b253e9691c90bc52ca199323d71b96204. (Oct.
2021).

[59] HØILAND-JØRGENSEN, T., BROUER, J. D., BORKMANN,
D., FASTABEND, J., HERBERT, T., AHERN, D., AND

MILLER, D. The eXpress data path: fast programmable
packet processing in the operating system kernel. In Pro-
ceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT’18)
(Dec. 2018).

[60] HUMPHRIES, J. T., NATU, N., CHAUGULE, A., WEISSE, O.,
RHODEN, B., DON, J., RIZZO, L., ROMBAKH, O., TURNER,
P., AND KOZYRAKIS, C. ghOSt: Fast & Flexible User-Space
Delegation of Linux Scheduling. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP’21)
(Oct. 2021).

[61] HUNG, H.-W., AND AMIRI SANI, A. BRF: Fuzzing the
eBPF Runtime. In Proceedings of the 2024 ACM Interna-
tional Conference on the Foundations of Software Engineer-
ing (FSE’24) (July 2024).

[62] HUNT, G., LARUS, J., ABADI, M., AIKEN, M., BARHAM, P.,
FAHNDRICH, M., HAWBLITZEL, C., HODSON, O., LEVI, S.,
MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER,
T., AND ZILL, B. An Overview of the Singularity Project.
Tech. Rep. MSR-TR-2005-135, Microsoft Research. (Oct.
2005).

[63] JIA, J., SAHU, R., OSWALD, A., WILLIAMS, D., LE, M. V.,
AND XU, T. Kernel extension verification is untenable. In
Proceedings of the 19th ACM Workshop on Hot Topics in
Operating Systems (HotOS’23) (June 2023).

[64] JIA, J., ZHU, Y., WILLIAMS, D., ARCANGELI, A.,
CANELLA, C., FRANKE, H., FELDMAN-FITZTHUM, T.,
SKARLATOS, D., GRUSS, D., AND XU, T. Programmable
System Call Security with eBPF. arXiv:2302.10366 (Feb.
2023).

[65] JIN, D., GAIDIS, A. J., AND KEMERLIS, V. P. BeeBox:
Hardening BPF against Transient Execution Attacks. In Pro-
ceedings of the 33rd USENIX Security Symposium (USENIX
Security’24) (Aug. 2024).

[66] JUNG, R., DANG, H.-H., KANG, J., AND DREYER, D.
Stacked borrows: an aliasing model for Rust. In Proceed-
ings of the 47th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’20) (Jan. 2020).

[67] JUNG, R., JOURDAN, J.-H., KREBBERS, R., AND DREYER,
D. RustBelt: securing the foundations of the Rust pro-
gramming language. In Proceedings of the 45th ACM SIG-
PLAN Symposium on Principles of Programming Languages
(POPL’18) (Jan. 2018).

[68] KIM, T. H., RUDO, D., ZHAO, K., ZHAO, Z. N., AND SKAR-
LATOS, D. Perspective: A Principled Framework for Pliable

https://github.com/cilium/cilium/commit/847014aa62f94e5a53178670cad1eacea455b227
https://github.com/cilium/cilium/commit/847014aa62f94e5a53178670cad1eacea455b227
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://lwn.net/Articles/899274/
https://lwn.net/Articles/899274/
https://lwn.net/Articles/910762/
https://lwn.net/Articles/910762/
https://lwn.net/Articles/856005/
https://lwn.net/Articles/856005/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/987635/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://github.com/aya-rs/aya/pull/698
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=958cf2e273f0929c66169e0788031310e8118722
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=958cf2e273f0929c66169e0788031310e8118722
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=958cf2e273f0929c66169e0788031310e8118722
https://lwn.net/Articles/946389/
https://lwn.net/Articles/946389/
https://docs.kernel.org/timers/hrtimers.html
https://docs.kernel.org/timers/hrtimers.html
https://github.com/cilium/cilium/commit/e38a92115620125b19c8761f35f6709e71c34511
https://github.com/cilium/cilium/commit/e38a92115620125b19c8761f35f6709e71c34511
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8a03e56b253e9691c90bc52ca199323d71b96204
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8a03e56b253e9691c90bc52ca199323d71b96204
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8a03e56b253e9691c90bc52ca199323d71b96204

and Secure Speculation in Operating Systems. In Proceed-
ings of the ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA’24) (June 2024).

[69] LATTUADA, A., HANCE, T., BOSAMIYA, J., BRUN, M.,
CHO, C., LEBLANC, H., SRINIVASAN, P., ACHERMANN,
R., CHAJED, T., HAWBLITZEL, C., HOWELL, J., LORCH,
J. R., PADON, O., AND PARNO, B. Verus: A Practical Foun-
dation for Systems Verification. In Proceedings of the 30th
ACM Symposium on Operating Systems Principles (SOSP’24)
(Sept. 2024).

[70] LATTUADA, A., HANCE, T., CHO, C., BRUN, M., SUBAS-
INGHE, I., ZHOU, Y., HOWELL, J., PARNO, B., AND HAW-
BLITZEL, C. Verus: Verifying Rust Programs using Linear
Ghost Types. In Proceedings of the 2023 ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’23) (Apr.
2023).

[71] LEVY, A., CAMPBELL, B., GHENA, B., GIFFIN, D. B., PAN-
NUTO, P., DUTTA, P., AND LEVIS, P. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles
(SOSP’17) (Oct. 2017).

[72] LIM, S. Y., HAN, X., AND PASQUIER, T. Unleashing Un-
privileged eBPF Potential with Dynamic Sandboxing. In
Proceedings of the 1st ACM SIGCOMM 2023 Workshop on
eBPF and Kernel Extensions (eBPF’23) (Sept. 2023).

[73] LIM, S. Y., PRASAD, T., HAN, X., AND PASQUIER, T.
SafeBPF: Hardware-assisted Defense-in-depth for eBPF Ker-
nel Extensions. arXiv:2409.07508 (Sept. 2024).

[74] LU, H., WANG, S., WU, Y., HE, W., AND ZHANG, F. MOAT:
Towards Safe BPF Kernel Extension. In Proceedings of the
33rd USENIX Security Symposium (USENIX Security’24)
(Aug. 2024).

[75] MCCANNE, S., AND JACOBSON, V. The BSD Packet Fil-
ter: A New Architecture for User-level Packet Capture. In
Proceedings of the 1993 Winter USENIX Conference (Jan.
1993).

[76] MILLER, S., ZHANG, K., ZHUO, D., XU, S., KRISHNA-
MURTHY, A., AND ANDERSON, T. Practical Safe Linux
Kernel Extensibility. In Proceedings of the 17th ACM Work-
shop on Hot Topics in Operating Systems (HotOS’21) (May
2021).

[77] MOGUL, J. C., RASHID, R. F., AND ACCETT, M. J. The
Packet Filter: An Efficient Mechanism for User-level Net-
work Code. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles (SOSP’87) (Nov. 1987).

[78] MOHAMED, M. H. N., WANG, X., AND RAVINDRAN, B.
Understanding the Security of Linux eBPF Subsystem. In
Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys’23) (Aug. 2023).

[79] MORES, K., PSOMADAKIS, S., AND GOUMAS, G. eBPF-
mm: Userspace-guided memory management in Linux with
eBPF. arXiv:2409.11220 (Sept. 2024).

[80] MURRAY, A. Unprivileged eBPF disabled by de-
fault for Ubuntu 20.04 LTS, 18.04 LTS, 16.04 ESM.

https://discourse.ubuntu.com/t/unprivileged-
ebpf-disabled-by-default-for-ubuntu-20-04-lts-
18-04-lts-16-04-esm/27047. (Mar. 2022).

[81] NARAYAN, S., GARFINKEL, T., JOHNSON, E., YEDIDIA,
Z., WANG, Y., BROWN, A., VAHLDIEK-OBERWAGNER, A.,
LEMAY, M., HUANG, W., WANG, X., SUN, M., TULLSEN,
D., AND STEFAN, D. Segue & ColorGuard: Optimizing
SFI Performance and Scalability on Modern Architectures.
In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’25) (Mar. 2025).

[82] NARAYANAN, V., HUANG, T., DETWEILER, D., APPEL, D.,
LI, Z., ZELLWEGER, G., AND BURTSEV, A. RedLeaf: Iso-
lation and Communication in a Safe Operating System. In
Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’20) (Nov. 2020).

[83] NECULA, G. C., AND LEE, P. Safe Kernel Extensions With-
out Run-Time Checking. In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’96) (Oct. 1996).

[84] NELSON, L., GEFFEN, J. V., TORLAK, E., AND WANG, X.
Specification and verification in the field: Applying formal
methods to BPF just-in-time compilers in the Linux kernel.
In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’20) (Nov. 2020).

[85] NELSON, L., WANG, X., AND TORLAK, E. A proof-carrying
approach to building correct and flexible BPF verifiers. In
Linux Plumbers Conference (Sept. 2021).

[86] RAJAHALME, J. datapath: Use inline func-
tion to keep policy and l4policy checks separate.
https://github.com/cilium/cilium/commit/
142c0f7128c7fac22eb18b2c21a56433f19a5ef8. (Apr.
2023).

[87] RHODEN, B. eBPF Kernel Scheduling with Ghost. In Linux
Plumbers Conference (LPC’22). https://lpc.events/
event/16/contributions/1365/. (Sept. 2022).

[88] SAHU, R., AND WILLIAMS, D. When BPF programs need
to die: exploring the design space for early BPF termination.
In Linux Plumbers Conference (LPC’23). https://lpc.
events/event/17/contributions/1610/. (Nov. 2023).

[89] SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing With Disaster: Surviving Misbehaved Kernel Exten-
sions. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation (OSDI’96)
(Oct. 1996).

[90] SKARLATOS, D., AND ZHAO, K. Towards Programmable
Memory Management with eBPF. In Linux Plumbers
Conference (LPC’24). https://lpc.events/event/18/
contributions/1932/. (Sept. 2024).

[91] SOMARAJU, S. R., CHINTAMANENI, S., AND WILLIAMS, D.
Overflowing the kernel stack with BPF. In Linux Plumbers
Conference (LPC’23). https://lpc.events/event/17/
contributions/1595/. (Nov. 2023).

[92] STAROVOITOV, A. bpf: verifier (add docs).
https://git.kernel.org/pub/scm/linux/

https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://github.com/cilium/cilium/commit/142c0f7128c7fac22eb18b2c21a56433f19a5ef8
https://github.com/cilium/cilium/commit/142c0f7128c7fac22eb18b2c21a56433f19a5ef8
https://lpc.events/event/16/contributions/1365/
https://lpc.events/event/16/contributions/1365/
https://lpc.events/event/17/contributions/1610/
https://lpc.events/event/17/contributions/1610/
https://lpc.events/event/18/contributions/1932/
https://lpc.events/event/18/contributions/1932/
https://lpc.events/event/17/contributions/1595/
https://lpc.events/event/17/contributions/1595/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550

kernel/git/stable/linux.git/commit/?id=
51580e798cb61b0fc63fa3aa6c5c975375aa0550. (Sept.
2014).

[93] SUN, H., AND SU, Z. Lazy Abstraction Refinement with
Proof. In Linux Plumbers Conference (LPC’24). https:
//lpc.events/event/18/contributions/1939/. (Sept.
2024).

[94] SUN, H., AND SU, Z. Validating the eBPF Verifier via State
Embedding. In Proceedings of the 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’24)
(July 2024).

[95] SUN, H., XU, Y., LIU, J., SHEN, Y., GUAN, N., AND JIANG,
Y. Finding Correctness Bugs in eBPF Verifier with Structured
and Sanitized Program. In Proceedings of the 19th ACM
European Conference on Computer Systems (EuroSys’24)
(Apr. 2024).

[96] VERNET, D. More flexible memory access for BPF programs.
https://lwn.net/Articles/910873/. (Oct. 2022).

[97] VISHWANATHAN, H., SHACHNAI, M., CHAIGNON, P., NA-
GARAKATTE, S., AND NARAYANA, S. Agni: Fast Formal Ver-
ification of the Verifier’s Range Analysis. In Linux Plumbers
Conference (LPC’24). https://lpc.events/event/18/
contributions/1937/. (Sept. 2024).

[98] VISHWANATHAN, H., SHACHNAI, M., NARAYANA, S., AND

NAGARAKATTE, S. Verifying the Verifier: eBPF Range Anal-
ysis Verification. In Proceedings of the 35th International
Conference on Computer Aided Verification (CAV’23) (July
2023).

[99] WAGNER, J., KUZNETSOV, V., AND CANDEA, G. -
OVERIFY: Optimizing Programs for Fast Verification. In
Proceedings of the 14th USENIX Workshop on Hot Topics in
Operating Systems (HotOS’13) (May 2013).

[100] WANG, X., LAZAR, D., ZELDOVICH, N., CHLIPALA, A.,
AND TATLOCK., Z. Jitk: A Trustworthy In-Kernel Interpreter
Infrastructure. In Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI’14) (Oct. 2014).

[101] WESTON, D. The journey towards default security. In
BlueHat IL 2023. https://www.youtube.com/watch?v=
8T6ClX-y2AE. (Mar. 2023).

[102] YANG, Z., LU, Y., LIAO, X., CHEN, Y., LI, J., HE, S., AND

SHU, J. λ-IO: A Unified IO Stack for Computational Storage.
In Proceedings of the 21st USENIX Conference on File and
Storage Technologies (FAST’23) (Feb. 2023).

[103] YEDIDIA, Z. Lightweight Fault Isolation: Practical, Effi-
cient, and Secure Software Sandboxing. In Proceedings of
the 29th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS’24) (Apr. 2024).

[104] ZHANG, P., WU, C., MENG, X., ZHANG, Y., PENG, M.,
ZHANG, S., HU, B., XIE, M., LAI, Y., KANG, Y., AND

WANG, Z. HIVE: A Hardware-assisted Isolated Execution
Environment for eBPF on AArch64. In Proceedings of the
33rd USENIX Security Symposium (USENIX Security’24)
(Aug. 2024).

[105] ZHANG, Y., LI, P., DING, Y., WANG, L., MENG, N., AND

WILLIAMS, D. Broadly Enabling KLEE to Effortlessly Find
Unrecoverable Errors. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP’24) (Apr. 2024).

[106] ZHONG, Y., LI, H., WU, Y. J., ZARKADAS, I., TAO,
J., MESTERHAZY, E., MAKRIS, M., YANG, J., TAI, A.,
STUTSMAN, R., AND CIDON, A. XRP: In-Kernel Storage
Functions with eBPF. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’22) (July 2022).

[107] ZHOU, Y., WANG, Z., DHARANIPRAGADA, S., AND YU, M.
Electrode: Accelerating Distributed Protocols with eBPF. In
Proceedings of the 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’23) (Apr. 2023).

[108] ZHOU, Y., XIANG, X., KILEY, M., DHARANIPRAGADA, S.,
AND YU, M. DINT: Fast In-Kernel Distributed Transactions
with eBPF. In Proceedings of the 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI’24)
(Apr. 2024).

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550
https://lpc.events/event/18/contributions/1939/
https://lpc.events/event/18/contributions/1939/
https://lwn.net/Articles/910873/
https://lpc.events/event/18/contributions/1937/
https://lpc.events/event/18/contributions/1937/
https://www.youtube.com/watch?v=8T6ClX-y2AE
https://www.youtube.com/watch?v=8T6ClX-y2AE

A Appendix

We discuss more details of the example mentioned in §3.1
where developers have to change their code to assist the eBPF
verifier. Figure 9a shows a code example from Cilium [86],
which originally used a goto statement to combine the code
path of policy and l4policy to avoid duplicated code. How-
ever, the combined code, which assigns l4policy to policy,
later causes the verifier to incorrectly believe that policy,
which is a pointer variable, is instead a scalar and reject the
program. As a workaround, developers had to refactor the
policy check code into an inlined function to separate the
code path to pass the verifier.

Developers also have to teach the verifier by providing
additional information. Figure 9b shows an example in Cil-
ium [37] where the verifier lost track of nh_params.nh_family,
a 32-bit scalar value on the stack, and mistakenly treated
it as a spilled 64-bit pointer, leading to an invalid size
error on the load. As a workaround, developers passed
fib_params->l.family directly instead of going through
nh_params.nh_family to let the verifier know the scalar value.
1 if (likely(l4policy && !l4policy ->wildcard_dport)) {
2 *match_type = POLICY_MATCH_L4_ONLY;
3 - policy = l4policy;
4 - goto policy_check_entry;
5 + return __account_and_check(ctx , l4policy , ...);
6 }
7

8 if (likely(policy && !policy ->wildcard_protocol)) {
9 *match_type = POLICY_MATCH_L3_PROTO;
10 - goto policy_check_entry;
11 + return __account_and_check(ctx, policy , ...);
12 }

(a) The assignment of policy to l4policy (L3) and the goto (L4)
causes the verifier to misinterpret the policy pointer as a scalar,
requiring the policy check logic to be refactored into its own function.

1 #ifndef ENABLE_SKIP_FIB
2 ...
3 if (likely(ret == BPF_FIB_LKUP_RET_NO_NEIGH)) {
4 nh_params.nh_family = fib_params ->l.family;
5 ...
6 } else {
7 return DROP_NO_FIB;
8 } ...
9 skip_oif:
10 #else
11 *oif = DIRECT_ROUTING_DEV_IFINDEX;
12 - nh_params.nh_family = fib_params ->l.family;
13 #endif /* ENABLE_SKIP_FIB */
14 ...
15 - dmac = nh_params.nh_family == AF_INET ? ...;
16 + dmac = fib_params ->l.family == AF_INET ? ...;

(b) The verifier mistakenly treats the 32-bit on-stack scalar
nh_params.nh_family as a pointer. Developers are forced to refac-
tor the code and avoid its use (L12 and L15).

Figure 9: Examples that developers had to work around the
language-verifier gap by refactoring already safe extensions

	Introduction
	Safety of Kernel Extensions
	The Language-Verifier Gap
	Verifier Workarounds
	Implications

	Key Idea and Safety Model
	Rex Design
	Safe Rust in Rex
	Memory safety
	Extended type safety
	Safe resource management
	Safe exception handling
	Kernel stack safety
	Termination

	Implementation
	Evaluation
	Usability
	Macro benchmark
	Micro benchmark

	Discussion
	Related Work
	Conclusion
	Appendix

